Homework #5 (Due on 10/23/2025)

- 1. Assume that your utility function over income, x, is given by $u(x) = \sqrt{x}$, i.e., a Cobb-Douglas type of function. You have been offered two wage options.
 - In the first one you will receive a fixed salary of \$54,000.
 - In the second one, you will only receive \$4,000 as a fixed payment, plus a bonus of \$100,000 if the firm is profitable. The probability that the firm goes profitable (and thus you get a total salary of \$104,000) is 0.5, while the probability that the firm does not make enough profits is 0.5.
 - (a) Find the expected value of the lottery induced by accepting the second wage offer.
 - (b) Find the expected utility associated with the second offer.
 - (c) Draw an approximate figure where the following elements are illustrated:
 - 1. Utility function (either concave, linear or convex);
 - 2. Utility level from the first wage offer;
 - 3. Utility level from each of the two possible outcomes of the second wage offer.
 - 4. Expected utility level from the second wage offer.
 - (d) Using your answers from parts (a) and (b), find the risk premium associated with the second offer.
 - (e) What amount of money should the first wage offer propose in order to make you indifferent between accepting the first and the second wage offers?
 - (f) In your figure from part (c) include the risk premium and the certainty equivalent of the second wage offer.
- 2. Consider the family of utility functions with Hyperbolic Absolute Risk Aversion (HARA) as follows

$$u(x) = \frac{1}{\beta - 1} (\alpha + \beta x)^{\frac{\beta - 1}{\beta}},$$

where $\beta \neq 0$ and $\beta \neq 1$. Find the Arrow-Pratt coefficient of absolute risk-aversion, $r_A(x, u)$.

3. An investor has the von Neumann Morgenstern utility function $u(c) = -e^{-\alpha c}$, where c is consumption, and where $\alpha > 0$. There are two states of the world, labelled 1 and 2, which are equally likely. There are two (rather extreme) assets, one of them attractive in state 1 and the other in state 2:

Note that this utility function is increasing in consumption, i.e., $\frac{\partial u(c)}{\partial c} = \alpha e^{-\alpha c}$, which is positive for all c > 0; and concave since $\frac{\partial^2 u(c)}{\partial c^2} = -\alpha^2 e^{-\alpha c}$ is negative for all c > 0.

- Asset 1 yields one unit of consumption in state 1, but nothing in state 2.
- Asset 2 yields nothing in state 1, but one unit of consumption in state 2.
- The price of the first asset is π_1 , while the price of the second asset is π_2 , where for simplicity $\pi_1 + \pi_2 = 1$. The investor starts with an endowment of w units of both assets, but seeks to balance her portfolio so as to maximize her expected utility. Denote by x_1 the number of units that he acquires of the first asset, and by x_2 the number of units of the second asset.
 - (a) Formulate the investor's expected utility maximization problem.
 - (b) Find the utility-maximizing purchases of assets 1 and 2, x_1 and x_2 , for this investor.
 - (c) How does the holding of assets change with parameter α ? Interpret.
 - (d) How does the investor's risk aversion and wealth level interact? How sensitive is this result to the specification of the utility function?
- 4. Max Pullman lives for exactly two periods, t = 0, 1. Let $c_t \in \mathbb{R}$ denote his consumption in period t. Max's preferences (evaluated at t = 0) over two-period consumption streams are represented by function

$$U(c_0, c_1) = u(c_0) + \delta E u(c_1)$$

where δ is a discount factor, $u(\cdot)$ is an increasing and strictly concave utility function, and the E operator denotes his expectation (at t=0) concerning events in period t=1. For simplicity, you can also assume that the marginal utility of consumption is convex, that is, u'''>0.

Suppose that there is initially no uncertainty. Let $w_0 \ge 0$ be Max's income in period 0 and let $w_1 \ge 0$ denote his income in period 1. Max can save or borrow. Let $s \in \mathbb{R}$ denote his saving (notice that s could be negative if he borrows) and let ρ denote the gross return on saving (i.e., $\rho = 1 + r$ where r is the interest rate). Thus, his consumption in period 0 is $w_0 - s$ and his consumption in period 1 is $w_1 + \rho s$. Assume interior solutions throughout the exercise.

- (a) Write down necessary and sufficient conditions for Max's choice of saving, s^* , to be positive.
- (b) Suppose that $w_1 = 0$ and that the conditions you found in part (a) hold. Find a condition on Max's coefficient of relative risk aversion that is necessary and sufficient for s^* to be (locally) increasing in ρ .

(c) Now suppose that Max faces uncertainty over his period 1 income. Specifically, suppose that his period 1 income is given by $w_1 + \tilde{x}$ where $w_1 \geq 0$ and random variable \tilde{x} exhibits an expected value of $E(\tilde{x}) = 0$. Let s^{**} denote Max's new optimal saving in this context. Show that $s^{**} > s^*$. [Hint: Suppose that $s^{**} = s^*$ and compare the first order conditions using Jensen's inequality.]