Homework #3 (Due on September 25th, 2025)

1. Assume that you have friend, Leo, who is now retired and lives on a fixed income w > 0 which does not adjust to inflation. His expenditure function is

$$e(p_1, p_2, u) = (p_1 + p_2)u,$$

where $p_1, p_2 > 0$ denote initial prices. Suppose that prices of goods 1 and 2 increase to p'_1 and p'_2 , respectively.

- (a) You want to give him a monetary gift so that he will not be affected by the above price increase. How much money should you give him? That is, find his compensating variation (CV).
- (b) Now find his equivalent variation (EV) from the price change, i.e., the change in income needed at initial prices p_1 and p_2 that would have the same effect on utility as would the change in prices, p'_1 and p'_2 .
- (c) Which is larger in this case, CV or EV?
- (d) Find his Walrasian demand for each good.
- (e) Find his utility function. What is this type of utility function called?
- 2. Chelsea loves chocolate (x) and books (y), and her utility from consuming these two goods can be represented by a with quasilinear utility function $u(x,y) = \rho\sqrt{x} + \tau y$, where $\rho, \tau > 0$.
 - (a) Find the Walrassian demand of the individual.
 - (b) Find the Hicksian demand for goods 1 and 2.
 - (c) Assume that Chelsea's wealth is w = \$500, and prices are $p_1 = p_2 = \$15$. For simplicity, consider parameters $\rho = 1, \tau = \frac{1}{2}$. Find the AV, CV and EV.
- 3. Consider an individual with utility function $u(q_1, q_2) = q_1^2 + q_2 1$, where $q_1(q_2)$ denotes the units of good 1 (good 2, respectively) that this individual consumes. His income level is denoted by $w \in \mathbb{R}_+$, and prices are both strictly positive, i.e., $\mathbf{p} = (p_1, p_2) \in \mathbb{R}^2_{++}$.
 - (a) Determine this individual's Walrasian demand, and his associated indirect utility function.
 - (b) Determine this individual's Hicksian demand, $h_1(\mathbf{p}, u)$ and $h_2(\mathbf{p}, u)$, and his associated expenditure function, $e(\mathbf{p}, u)$.

Consider now that this individual's income level is w = 6, and the initial vector of market prices is $\mathbf{p^0} = (4,3)$. If both prices increase by 50%, determine:

- 1. (c) The compensating variation of this price increase. Interpret.
 - (d) The change in consumer surplus associated to this price increase. Interpret.
- 4. Consider a firm with production function $q = \sqrt{z}$, using one input (e.g., labor) to produce one type of output. The price of every unit of input is w = 8, and the price of every unit of output is p > 0.
 - (a) Set up the firm's profit-maximization problem, and solve for its unconditional factor demand z(8, p).
 - (b) Evaluate the profit function at the unconditional factor demand z(8, p). Test for convexity of the profit function in output price p.
 - (c) Let us now illustrate convexity in output prices by using an alternative approach: (1) evaluate the profit function you found in part (b) at prices p = 6, and at p = 12. Then, find their convex combination $\alpha\pi(6) + (1 \alpha)\pi(12)$ where $\alpha \in [0, 1]$; (2) evaluate the profit function at the convex combination of the above output prices, that is, $\pi(\alpha 6 + (1 \alpha) 12)$. Last, show that the profit function you found in step (1) lies weakly above that found in step (2) for all values of α , that is,

$$\alpha\pi(6) + (1 - \alpha)\pi(12) \ge \pi(\alpha 6 + (1 - \alpha)12).$$