Homework # 2 EconS501 [Due on Sepetember 11th, 2025]

Instructor: Ana Espinola-Arredondo

1. Let $(\mathcal{B}, C(\cdot))$ be a choice structure where \mathcal{B} includes all non-empty subsets of consumption bundles X, i.e., $C(B) \neq \emptyset$ for all sets $B \in \mathcal{B}$. We define the choice rule $C(\cdot)$ to be distributive if, for any two sets B and B' in \mathcal{B} ,

$$C(B) \cap C(B') \neq \emptyset$$
 implies that $C(B) \cap C(B') = C(B \cap B')$

In words, the elements that the individual decision maker selects both when facing set B and when facing set B', $C(B) \cap C(B')$, coincide with the elements that he would select when confronted with the elements that belong to both sets $B \cap B'$, i.e., $C(B \cap B')$. Show that, if choice rule $C(\cdot)$ is distributive, then choice structure $(\mathcal{B}, C(\cdot))$ does not necessarily satisfy the weak axiom of revealed preference. (A counterexample suffices.)

2. Consider an individual with utility function

$$u(x_1, x_2) = \ln x_1 + x_2,$$

where x_1 and x_2 denote the amounts consumed of non-organic and organic goods, respectively. The prices of these goods are $p_1 > 0$ and $p_2 > 0$, respectively; and this individual's wealth is w > 0.

- (a) Find this consumer's uncompensated demand for every good $x_i(p, w)$, where $i = \{1, 2\}$. [For compactness, we use p to denote the price vector $p \equiv (p_1, p_2)$.] Under which conditions the consumer demands positive amounts of both goods? Interpret your results.
- (b) Find the indirect utility function, v(p, w).
- (c) Find this consumer's expenditure function, e(p, v), and her compensated demand for every good $h_i(p, w)$, where $i = \{1, 2\}$.
- (d) Solve parts (a)-(c) of the exercise again, but considering that the consumer's utility function is now $u(x_1, x_2) = (x_1 a_1)(x_2 a_2)$, where parameters a_1 and a_2 are both weakly positive, $a_1, a_2 \ge 0$.
- 3. Consider a consumer with utility function $u(x_1, x_2, x_3) = x_1 x_2 x_3$, and income w.
 - (a) Set up the consumer's utility maximization problem and find the Walrasian demands for each good.

- (b) Let $x_1 + \frac{p_2}{p_1}x_2 = x_c$ denote the units of a composite good. Set up the consumer's utility maximization problem again, but now in terms of the composite good x_c . Find the Walrasian demand function for the composite good x_c .
- (c) Show that the Walrasian demands you found in parts (a) and (b) are equivalent.
- 4. Consider a consumer with quasilinear utility function u(x, y, q) = v(x, q) + y, where x denotes units of good x, q represents its quality, and y reflects the numeraire good (whose price is normalized to 1). The price of good x is p > 0, and the consumer's wealth is w > 0. Assume that $v_x, v_q > 0$ and $v_{xx} \le 0$.
 - (a) Set up the consumer's utility maximization problem.
 - (b) Show that the Walrasian demand x(p,q) is: (1) decreasing in p; and (2) increasing in q if $v_{xq} > 0$. Interpret your results.
 - (c) Assume in this part of the exercise that $v_{xq} > 0$ so that $\frac{\partial x(p,q)}{\partial q} > 0$. We say that a Walrasian demand x(p,q) is supermodular in (p,q) if the following property holds

$$\underbrace{x(p,q)\frac{\partial^2 x(p,q)}{\partial p \partial q}}_{\text{First term}} - \underbrace{\frac{\partial x(p,q)}{\partial p}}_{\text{(-) from part (b) (+) from part (b)}}_{\text{Second term, +}} > 0.$$

From part (b) we know that $\frac{\partial x(p,q)}{\partial p} < 0$ and that $\frac{\partial x(p,q)}{\partial q}$ is positive. Therefore, for Walrasian demand x(p,q) to be supermodularity we only need that the crosspartial $\frac{\partial^2 x(p,q)}{\partial p \partial q}$ is either positive, entailing an unambigous expression above, or not very negative, so the positive second term offsets the potentially negative first term. Show that supermodularity holds if $v_{xx}v_{xq} + x(v_{xxx}v_{xq} - v_{xxq}v_{xx}) < 0$. Interpret your results.

- 5. Consider utility function u(x, y), where x and y represent the units of two goods. Assume that $u(\cdot)$ is twice continuously differentiable, strictly increasing and concave in both of its arguments, x and y. Assuming that the consumer's wealth is given by w > 0, and that he faces a price vector $p = (p_x, p_y) >> 0$, denote his indirect utility function as v(p, w).
 - (a) Use the indirect utility function v(p, w) to find the consumer willingness to pay for good y.
 - (b) Identify under which condition is this willingness to pay for good y increasing or decreasing in income, w. Interpret.