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GLOBAL RESEARCH >

The probability of a
recession remains at
60%

April 15, 2025

Aggressive tariff policy could push the U.S. — and

possibly the global economy — into res ion this
year.

Global recession outlook

Probabilities

Resilience
(U.S. policy detente)
40%

Recession
60%

Source: J.P. Morga

U.S. animal spirits lift: 5%
3% U.S. growth, no Fed ease

U.S. exceptionalism ends: 25%
U.S. growth below 2%; Euro area lift

Goldilocks: 10%
Balanced growth, inflation and rates
normalize

U.S. exceptionalism unwinds: 20%
U.S. recession, RoW modest growth

Misery loves company: 40%
Global recession
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Goldman Sachs Research expects a 0.5% GDP hit from trade tensions
Impact of US tariffs on GDP Level
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Full implementation assumes a 10% tariff on all US imports (including from Europe) and baseline gﬂldmﬂ“
assumes a more limited set of tariffs on Europe, including on autos-related imports, and tariffs on achs
China.
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Looking back...

@ So far we have been able to find the NE of a relatively large
class of games with complete information:
o Games with two or several (n > 2) players.

e Games where players select among discrete or continuous
actions.

@ But, can we assure that all complete information games where
players select their actions simultaneously have a NE?

e We couldn't find a NE for the matching pennies game!! (Next
slide)

o We will be able to claim existence of a NE if we allow players
to randomize their actions.



Remembering the "matching pennies" game...

@ Recall that this was an example of an anti-coordination game:

P,
Head Tail
Head 1,a m,1
Py
Tail o, 1 1A

Indeed, there is no strategy pair in which players select a
particular action 100% of the times.

@ We need to allow players to randomize their choices.



Another example

@ Here we have another example of an anti-coordination game
with no psNE:

Surprise! DrugDealer
\ Street
Corner Park

Street
Police Corner 80, 20 0,100

Officer . 10,90 | 60,40

@ We need to allow players randomize their choices (i.e., to play
mixed strategies).



Mixed strategy Nash equilibrium

@ Harrington: Chapter 7, Watson: Chapter 11.

o First, note that if a player plays more than one strategy with
strictly positive probability, then he must be indifferent
between the strategies he plays with strictly positive
probability.

@ Notation: "non-degenerate" mixed strategies denotes a set of
strategies that a player plays with strictly positive probability.

o Whereas "degenerate" mixed strategy is just a pure strategy

(because of degenerate probability distribution concentrates all
its probability weight at a single point).



Degenerate Probability Distributions

@ Example of non-degenerate probability distributions

Prob. Prob.

Wl

-

Output, q Output, ¢
0 1 million@nits 0 g=5 g=10



Degenerate Probability Distributions

@ Example of a degenerate probability distribution

Prob.
1

Output, g
0 g = 8 units

@ The player (e.g., firm) puts all probability weight (100%) on
only one of its possible actions: g = 8.



@ Definition of msNE:

o Consider a strategy profile ¢ = (01,09, ...,0,) where 7} is a
mixed strategy for player i. ¢ is a msNE if and only if

ui(oj, o) > ui(sl,o_;) for all s] € S; and for all i

e That is, 0} is a best response of player i to the strategy profile
o_; of the other N — 1 players, 0; = BR;(0_;).



e Notice that we wrote u;j(cj, 0—_;) > ui(s}, 0_;) instead of
U,'(O',', 0'7,') Z u,-(o‘?, 0'7,').

e Why? If a player was using ¢, then he would indifferent
between all pure strategies to which ¢’ puts a positive
probability, for example §; and §;.

e That is why it suffices to check that no player has a profitable
pure-strategy deviation.



Example 1:Matching pennies

e Matching pennies

Player 2
q l1-gq
Heads Tails

Player 1 p Heads | 1,—1 | —1,1
1—p Tails -1,11]1,-1

e Two alternative interpretations of players’
randomization:
o If player 1 is using a mixed strategy, it must be that he
indifferent between Heads and Tails
o Alternatively, if player 1 is indifferent between Heads and Tails,
it must be that player 2 mixes with such probability g such
that player 1 is made indifferent between Heads and Tails:

EUi1(H) = EU(T) <= 19+ (1—q)(-1) = (-1)q+1(1—q)



Matching pennies

e Matching pennies (example of a normal form game with no
psNE):

Player 2
q l-gq
Heads Tails
Player 1 P Heads | 1,—-1 | —1,1
1—-p Tails | —=1,1 | 1,—-1

@ Solving for the EU comparison, we obtain

EUi(H) = EUi(T) <= 1g+(1—q)(-1) = (-1)g+1(1—q)

~—

g = — — Graphical Interpretation

N~



Matching pennies

@ How to interpret this cutoff of g = % graphically?

@ We know that if g > % then player 2 is very likely playing

Heads. Then, player 1 prefers to play Heads as well (p = 1).
o Alternatively, note that g > % implies EU; (H) > EUy(T).

@ Go to the figure on the next slide, and draw p = 1 for every
q> 3.

Qlfg< % player 2 is likely playing Tails. Then, player 1 prefers
to play Tails as well (p = 0).

© Graphically, draw p = 0 for every g < %



Matching pennies

(Player 2) g
Heads 1

BRi(q)

q:l/z\ \\

From 1stand

2nd steps
From 3" and
4t steps
(Player 1) p
Tails

Heads



Matching pennies

@ Similarly, if player 2 is using a mixed strategy, it must be that
he is indifferent between Heads and Tails:

EUs(H) = EUs(T)

(-)p+1(1—p)=1p+(-1)(1—-p) <= p=3
o (See figure after next slide)



Matching pennies

o Player 2

@ We know that if p > % player 1 is likely playing heads. Then
player 2 wants to play tails instead, i.e.,, g = 0.

@ Go to the figure on the next slide, and draw g = 0 for all
p> 3.

QIlfp< % player 1 is likely playing tails. Then player 2 wants to
play heads, i.e., g = 1.

: _ 1
© Graphically, draw g =1 for all p < 5.



Matching pennies

(Player 2) q
Heads 1

Tails

/ g=1for@ll p < ¥ (3¢ and 4™ steps)

BR>(p)

dq =0 for@ll p> %
(15t and 2" Steps)

(Player 1) p



Matching pennies

@ We can represent these BRFs as follows:
e Player 1
Heads if g > %
BR1(q) = { {Heads, Tails} if g = %
Tails if g < §
o Player 1 is indifferent between Heads and Tails when q is
exactly g = %
o Player 2
Tails if p >
BRy(p) = { {Heads, Tails} if p = 1
Heads if p < %

o Player 2 is indifferent between Heads and Tails when p is
exactly p = %



Matching pennies

(Player 2) g
Heads 1
BRi(q)
q="%%
UniquesNE
N NE
(NopsNE) BR(p)
/ (Player 1) p
Tails © p=%Y

Heads

e Player 1: When g > % Player 1 prefers to play Heads
(p = 1); otherwise, Tails.

o Player 2: When p > 1, Player 2 prefers to play Tails (g = 0);
otherwise, Heads.



Matching pennies

@ Therefore, the msNE of this game can be represented as

Uaa7) (a27)

where the first parenthesis refers to player 1(row player), and
the player 2(column player).



Battle of the sexes

2. Battle of the sexes (example of a normal form game with 2
psNE already!):

Wife
q 18g
Football Opera
p  Football 31 0,0
Husband
1@p Opera 0,0 1,3

If the Husband is using a mixed strategy, it must be that he
indifferent between Football and Opera:

EU,(F) = EU.(0)
3¢g+0(1—q) = 0g+1(1—q)
3g = 1—gq

1

q 9=



Battle of the sexes

Similarly, if the Wife is using a mixed strategy, it must be that she
is indifferent between Football and Opera:

EU,(F) = EU,(0)
Practice!
3
Pr= 3

Therefore, the msNE of this game can be represented as

3_1 1_3

Husband Wife




Battle of the sexes

(Wife) q
Football 1

BRy(p) BRi(q)

>
N

(Husband) p
Opera p=%
Football

e Husband: When g > %, he prefers to go to the Football
game (p = 1); otherwise, the Opera.

o Wife: When p > 3 she prefers to go to the Football game
(g = 1); otherwise, the Opera.



Battle of the sexes

@ Best Responses for Battle of the Sexes are hence:
o Player 1 (Husband)

Football if g > }

BRi(q) = { {Football, Opera} if g = %
Opera if g < %
o Player 2 (Wife)
Football if p > %
BRy(p) = { {Football, Opera} if p = 3
Operaif p < %



Battle of the sexes

@ Note the differences in the cutoffs: They reveal each player's
preferences.

e Husband: "I will go to the football game as long as there is a
slim probability that my wife will be there."

o Wife: "I will only go to the football game if there is more than
a 75% chance my husband will be there."



Prisoner’'s Dilemma

3. Prisoner’s Dilemma (One psNE, but are there any msNE?):

Player 2
q 1 Bg
Confess Not@onfess

D Confess @, B Q, A5

Player1

Not
1ep Confess @as, 0 o, e

If the first player is using a mixed strategy, it must be that he
indifferent between Confess and Not Confess:

EU;(C) = EU(NC)

-5q+0(1—q) = —15¢+(-1)(1—q)
—5g = —15g—1+g¢q
1
9q = -1 = g=—="

9



Prisoner’'s Dilemma

@ Similarly, if player 2 is using a mixed strategy, it must be that
she is indifferent between Confess and Not Confess:

EU,(C) = EU(NC)
—5p+0(1—p) = —15p+(-1)(1—p)
—5p = —15p—1+4p
1

9

@ Hence, such msNE would not assign any positive weight to
strategies that are strictly dominated.

o Some textbooks refer to this result by saying that "the support
of the msNE is positive only for strategies that are not strictly
dominated."



Tennis game (msNE with three available strategies)

4. Tennis game (No psNE, but how do we operate with 3
strategies?):

Player 2
q 108g
F C B
F 0,5 2,3 2,3
Player1 p C 2,3 1,5 3,2
1@p B 50 3,2 2,3

@ Remember this game? We used it as an example of how to
delete an strategy that was strictly dominated by the
combination of two strategies of that player.

o Let's do it again.



Tennis game (msNE with three available strategies)

o F is strictly dominated for Player 1:

Player 2
q 1 Bgq
F c B
F 0,5 2,3 2,3
Player1 -
fegs | 41 %,3R 15 HOLE DS

jormsee: /[ toadue ] leade ]
1(3)-dmo)e 1 1 (5)B-dm2) -3

@ We can hence rule out F from Player 1 because it is strictly
dominated by (3C, 2B).



Tennis game (msNE with three available strategies)

o After deleting F from Player 1's available actions, we are left

with:
Player 2
F C B
C 2,3 1,5 3,2
Player1
B 50 3,2 2,3

@ Where we can rule out F from Player 2 because of being
strictly dominated by C.



Tennis game (msNE with three available strategies)

@ Once strategy F has been deleted for both players, we are left

with:

Player1

@ But we cannot identify any psNE, Let's check for msNE:
o If the first player is using a mixed strategy, it must be that he
indifferent between C and B:

EU(C)

p C

1op B

Player 2
q 108q
c B
1,5 3,2
3,2 2,3

EUy(B

)

} Practice!



Tennis game (msNE with three available strategies)

@ Similarly, if player 2 is using a mixed strategy, it must be that
she is indifferent between C and B:

EU>(C) = EUy(NC)

Practice!

p = 5

@ (See figure on next slide)



Tennis game (msNE with three available strategies)

(Player 2) q
Center 1
BR,(p)
mSNE BRi(q)
1
9= 3
0 E (Player 1) p
Back P=" Center

e Player 1: If g > % then Player 1 prefers Back (p = 0);
otherwise Center.

o Player 2: If p > %, then Player 2 prefers Center (g = 1);
otherwise Back.



Tennis game (msNE with three available strategies)

@ Best Responses in the Tennis Game
e Player 1
Back if g > %

BRi(q) = {Center, Back} if g = %
Center if g < 1

@ (Recall that p = 0 implies playing strategy back with
probability one).

o Player 2
Center if p > %

BRy(p) = { {Center, Back} if p= %
Back if p < }



Graphical representation of BRFs and msNE:

@ Matching pennies (Done v')
@ Battle of the sexes (coordination) (Done v')
© Additional practice:

® Lobbying game (Watson page 124).
@ Chicken game (anticoordination).



A few tricks we just learned...

o Indifference: If it is optimal to randomize over a collection of
pure strategies, then a player receives the same expected
payoff from each of those pure strategies.

e He must be indifferent between those pure strategies over
which he randomizes.

e Odd number: In almost all finite games (games with a finite
set of players and available actions), there is a finite and odd
number of equilibria.

o Examples: 1 NE in matching pennies (only one msNE), 3 NE
in BoS (two psNE, one msNE), 1 in PD (only one psNE), etc.

@ Never use strictly dominated strategies: If a pure strategy
does not survive the IDSDS, then a NE assigns a zero
probability to that pure strategy.

e Example: PD game, where NC is strictly dominated, it does
not receive any positive probability.



What if players have three undominated strategies?

@ Consider the rock-paper-scissors game

Rock

Player1 Paper

Scissors

e First, note that neither player selects a pure strategy (with

100% probability).

Player 2
Rock Paper Scissors
0,0 @, 1 1A
1A 0,0 m,1
@a,1 1A 0,0




What if players have three undominated strategies?

@ Second, every player must be mixing between all his three
possible actions, R, P and S.

Player?2
Rock Paper Scissors
I[f@layer 1 only
mixesbetween | Rock 0,0 @, 1 1, @
Rock@nd®aper
Player1 |Paper 1,a 0,0 @, 1
Scissors @, 1 1, @ 0,0

@ Otherwise: if P1 mixes only between Rock and Paper, then
Player 2 prefers to respond with Paper rather than Rock.

@ But if Player 2 never uses Rock, then Player 1 gets a higher
payoff with Scissors than Paper. Contradicton!

@ Then players cannot be mixing between only two of their
available strategies.



What if players have three undominated strategies?

@ Are you suspecting that the msNE is o = (3, 3, 3)? You're

right!
Player?2
Rock Paper Scissors
Rock 0,0 @, 1 1, A
Player1 Paper 1,a 0,0 [, 1
Scissors m,1 1, 2 0,0

@ We must make every player indifferent between using Rock,
Paper, or Scissors.

e That is, uy(Rock,02) = uy(Paper,0y) = ui(Scissors, 03) for
Player 1, and

o uy(01, Rock) = uy (01, Paper) = ux (01, Scissors) for Player 2.



What if players have three undominated strategies?

@ Let's separately find each of these expected utilities.
e If player 1 chooses Rock (first row), he obtains

Ul(ROCk,O'z) = OU'Q(R)+(-1)0’2(P)+1(1—0’2(R)—U'Q(P))
= —10’2(P)+1—0’2(R)—0’2(P)

Player 2
FirstRow Rock  paper setssare
Rock 0,0 @, 1 1,7
Player1 Paper 1, A 0,0 m,1
Scissors @, 1 1,a 0,0




What if players have three undominated strategies?

o If player 1 chooses Paper (second row), he obtains

up(Paper,03) = 102(R) +002(P) 4+ (=1)(1 — 02(R) — 02(P))
= 0'2(R>—1—|—(72(R)—|—0’2<P)

Second@Row

Player 1

Player 2
a2(R) o2(P) 1 o> (R) Boz(P)
Rock Paper Scissors
Rock 0,0 A, 1 1,A
Paper 1, A 0,0 o, 1

Scissors @, 1 1, A 0,0




What if players have three undominated strategies?

e If player 1 chooses Scissors (third row), he obtains

up (Scissors,03) = (=1)02(R) + 102(P) +0(1 — 02(R) — 02(P))
= —02(R)+02(P)

Player?2
O-Z(R) O'z(P) 1 @Uz(R) Uz(P)
Rock Paper Scissors
Rock 0,0 @, 1 1, A
Player1 Paper 1, A 0,0 a,1
Third®Row | Scissors @, 1 1,2 0,0




What if players have three undominated strategies?

@ Making the three expected utilities

up(Rock,02) = —102(P)+1—02(R) — 02(P),
up (Paper,02) = 02(R) — 14 02(R) + 02(P), and
ui(Scissors, 03) = —02(R) +02(P)

equal to each other, we obtain
UQ(R) = U'Q(P) =1- UQ(R) — (TQ(P)

@ Hence, player 2 assigns the same probability weights to his
three available actions, thus implying

s (P11
27\3'3'3

@ A similar argument is applicable to player 1, since players’
payoffs are symmetric.



Summarizing...

@ We learned how to find msNE in games:
e with 2 players, each with 2 available strategies (2x2 matrix)
e e.g., matching pennies game, battle of the sexes, etc.
e with 2 players, but each having 3 available strategies (3x3
matrix)

o e.g., tennis game (which actually reduced to a 2x2 matrix after
deleting strictly dominated strategies), and

e the rock-paper-scissors game, where we couldn’t identify
strictly dominated strategies and, hence, had to make players
indifferent between their three available strategies.

@ What about games with 3 players?



More advanced mixed strategy games

What if we have three players, instead of two?
(Harrington pp 201-204). "Friday the 13th!"




More advanced mixed strategy games

Beth Beth
Front Back Front Back
Front 0,00 @, 1,2 Front 3,3,2 1,32
Tommy Tommy
Back 1,@2 | 2,22 Back 1,2 | 000

Jason, Front Jason, Back



More advanced mixed strategy games

Friday the 13th!

Beth Beth
Front Back Front Back
Front 0,0,0 @, 1,2 Front 3,32 1,32
Tommy Tommy
Back 1,0, 2 2,2,2 Back o, 1,2 0,0,0
Jason, Front Jason, Back

@ First step: let's check for strictly dominated strategies
(none).

@ Second step: let's check for psNE (none). The movie is
getting interestin!

@ Third step: let's check for msNE. (note that all strategies are
used by all players), since there are no strictly dominated
strategies.



msNE with three players

@ Since we could not delete any strictly dominated strategy,
then all strategies must be used by all three players.

@ In this exercise we need three probabilities, one for each player.
@ Let's denote:

e t the probability that Tommy goes through the front door
(first row in both matrices).

e b the probability that Beth goes through the front door (first
column in both matrices).

o j the probability that Jason goes through the front door
(left-hand matrix).



msNE with three players

Let us start with Jason, EU,(F) = EU,(B), where

EUJ(F) = th0+t(1—b)2 + (1 —t)b2+ (1 —t)(1— b)(—2)
Tommy goes through Tommy goes through
the front door, t the back door, (1—t)

— —2+44t+4b—6th

and

EU)(B) = th(—2)+t(1—b)2+ (1—t)b2+ (1—t)(1— b)O
= 2t+2b—06tb

since EU,(F) = EU,(B) we have

—2+4t+4b—6th=2t+2b—6th < t+b=1 (1)
h\/—/

Condition (1)



msNE with three players

Let us now continue with Tommy, EUt(F) = EU7(B), where

EUr(F) =

and

EUr(B) =

bjo+ (1 = b)j(—4) +b(1—j)3+ (1 = b)(1 —j)(1)
1+2b— 5/ + 2bj

bjl + (1= b)j2+ b(1 —j)(=4) + (1= b)(1 - j)(0)
—4b+2j + 3bj

since EUT(F) = EUT(B) we have

14+2b—5j+2bj = —4b+2j+3bj <> 7j—6b+bj=1 (2)

Condition (2)



msNE with three players

@ And given that the payoffs for Tommy and Beth are
symmetric, we must have that Tommy and Beth’s
probabilities coincide, t = b.

o Hence we don't need to find the indifference condition
EUg(F) = EUg(B) for Beth.

o Instead, we can use Tommy's condition (2) (i.e.,
7j —6b+ bj = 1), to obtain the following condition for Beth:

7j—6t+1=1

e We must solve conditions (1),(2) and (3).



@ First, by symmetry we must have that t = b. Using this result
in condition (1) we obtain

1

t+b=1— t+t=1— t=b=7
@ Using this result into condition (2), we find
. . o1 1.

Solving for j we obtain j = %.



msNE with three players

@ Representing the msNE in Friday the 13th:

1 1 1 1 8 7
<2Front, 2Back>, <2Front, 2Back>, <15Front, 15Back)

/

-~

Tommy Beth Jason



msNE with three players

@ Just for fun: What is then the probability that Tommy and
Beth scape from Jason?

e They scape if they both go through a door where Jason is not

located.
11 8 L1 7 15
15 22 15 60
~—~ ~—~
Jason goes Front Jason goes Back

@ The first term represents the probability that both Tommy
and Beth go through the Back door (which occurs with
%% = % probability) while Jason goes to the Front door.

@ The second term represents the opposite case: Tommy and
Beth go through the Front door (which occurs with %% = %

probability) while Jason goes to the Back door.



msNE with three players

@ Even if they escape from Jason this time, there is still...

@ There are actually NO sequels:

o Their probability of escaping Jason is then (1—8)10,about lin

a million !



Testing the Theory

@ A natural question at this point is how we can empirically
test, as external observers, if individuals behave as predicted
by our theoretical models.

o In other words, how can we check if individuals randomize with

approximately the same probability that we found to be
optimal in the msNE of the game?



Testing the Theory

@ In order to test the theoretical predictions of our models, we
need to find settings where players seek to "surprise" their
opponents (so playing a pure strategy is not rational), and
where stakes are high.

e Can you think of any?



Penalty kicks in soccer




Penalty kicks in soccer

Payoffs represent the Left
probability he scores.

Kicker Center

Right

His payoffs represent the probability that
the kicker does not score (That is why
within a given cell, payoffs sum up to one).

Goalkeeper
Left Center Right

.65,.35 | .95,.05 | .95,.05

.95, .05 0,1 .95, .05

.95,.05 | .95,.05 | .65,.35




Penalty kicks in soccer

@ We should expect soccer players randomize their decision.

o Otherwise, the kicker could anticipate where the goalie dives
and kick to the other side. Similarly for the goalie.

@ Let's describe the kicker's expected utility from kicking the
ball left, center or right.



Penalty kicks in soccer

EUKicker(Left) = g *%x0.65+4+ g, x0.95+ (1 — g — g/) x 0.95
0.95 — 0.3, (1)

EUkicker(Center) = g %095+ g, %095+ (1 — g, —g/) x0
0.95(gr + &) (2)

EUkicker(Right) = g/%0.95+4 g, x0.65+ (1 — g — g7) *0.95
0.95 - 0.3g, (3)



Penalty kicks in soccer

@ Since the kicker must be indifferent between all his strategies,
EUKicker(Left) - EUKicker(Right)

095—-03g/=095—-03g, — g =g — g =8 =&
Using this information in (2), we have

0.95(g+g)=19¢
Hence,

0.95—0.3g = 1.9g = g=—-——=043
_— =

EUK,Cker(Left) EUkicker (Center)
EUchker(R’ght)



Penalty kicks in soccer

@ Therefore,

(01, 0¢c,0r) = (0.43, 0.14 , 043 )
g1 From the fact that r
gi+gr+gc=1 where g/1=g,=g

o If the set of goalkeepers is similar, we can find the same set of
mixed strategies,

(01,0¢c,0r) = (0.43,0.14,0.43)



Penalty kicks in soccer

@ Hence, the probability that a goal is scored is:

o Goalkeeper dives left —

0.43 % (0.43 x0.65 + 0.14 x0.95 + 0.43 %0.95)

Kicker Kicker Kicker
aims aims aims
left center right

o Goalkeeper dives center —
+0.14 % (0.43 % 0.95 + 0.14 %« 0 4 0.43 % 0.95)
o Goalkeeper dives right —

40.43 % (0.43 % 0.95 + 0.14 % 0.95 + 0.43 * 0.65)

= 0.82044, i.e., a goal is scored with 82% probability.



Penalty kicks in soccer

@ Interested in more details?

o First, read Harrington pp. 199-201.
e Then you can have a look at the article

@ "Professionals play Minimax" by Ignacio Palacios-Huerta,
Review of Economic Studies, 2003.

o This author published a very readable book last year:

e Beautiful Game Theory: How Soccer Can Help Economics.
Princeton University Press, 2014.



Summarizing...

@ So far we have learned how to find msNE is games:

e with two players (either with 2 or more available strategies).
o with three players (e.g., Friday the 13th movie).

@ What about generalizing the notion of msNE to games with N
players?

o Easy! We just need to guarantee that every player is
indifferent between all his available strategies.



msNE with N players

e Example: "Extreme snob effect" (Watson).

@ Every player chooses between alternative X and Y (Levi's and Calvin
Klein). Every player i's payoff is 1 if he selects Y, but if he selects X
his payoff is:

e 2 if no other player chooses X, and
e 0 if some other player chooses X as well




@ Let's check for a symmetric msNE where all players select Y with
probability &. Given that player i must be indifferent between X and
Y, EU;(X) = EU;(Y), where

EU:(X) = a" 12 + (1—a" 10
— &\,_/

all other n—1 players select Y Not all other players select Y



msNE with N players

@ and EU;(Y) =1, then EU;(X) = EU;(Y) implies

n—1 1)t
4 2=1 < a= 5

o Comparative statics of «, the probability a player selects
the "conforming" option Y, a = (3)7:
@ « increases in the size of the population n.

o That is, the larger the size of the population, the more likely it
is that somebody else chooses the same as you, and as a
consequence you don't take the risk of choosing the snob
option X. Instead, you select the "conforming" option Y.



msNE with N players

@ Probability of choosing strategy Y as a function of the
number of individuals, n.

a @Probability

1.000

9999

pmb(x)l [

/ prob(y)

0.998

prob(X) + prob(Y) = 1, prob(X)...then, (X) =1 — prob(Y)



Another example of msNE with N players

o Another example with N players: The bystander effect
@ The "bystander effect" refers to the lack of response to help
someone nearby who is in need.

e Famous example: In 1964 Kitty Genovese was attacked near
her apartment building in New York City. Despite 38 people
reported having heard her screams, no one came to her aid.

e Also confimed in laboratory and field studies in psychology.




Another example of msNE with N players

@ General finding of these studies:

e A person is less likely to offer assistance to someone in need
when the person is in a large group than when he/she is alone.

e e.g., all those people who heard Kitty Genovese's cries knew
that many others heard them as well.

e In fact, some studies show that the more people that are there
who could help, the less likely help is to occur.

@ Can this outcome be consistent with players maximizing their
utility level?

e Yes, let's see how.



Another example of msNE with N players

Other players
All ignore At least one
helps
Helps a C
Player
Ignores d b

@ where a > d — so if all ignore, | prefer to help the person in
need.

@ but b > ¢ — so, if at least somebody helps, | prefer to
ignore.

@ Note that assumptions are not so selfish : people would prefer
to help if nobody else does.



Another example of msNE with N players

@ msNE:

o Let's consider a symmetric msNE whereby every player i:

@ Helps with probability p, and
@ lIgnores with probability 1 — p.



Another example of msNE with N players

EU/(Help) = (1—p)"txa+[l1—(1—p)" '] *c
If everybody If at least one of the
else ignores other n—1 players helps

EU(Ignore) = (1—p)" tsd+[1—(1—p)"]*b
If everybody If at least one of the
else ignores other n—1 players helps

@ When a player randomizes, he is indifferent between help and
ignore,
EUi(Help) = EU;(Ignore)
(1—p)"txa+ 1-(1- p)”fl] xC
= (1—p)”71*d—|—[1—(1—p)”71]*b
(1—-p)"a—c—d+b)=b—c



Another example of msNE with N players

@ Solving for p,

b—c

1— n—1 —
( P) a—c—d+b

1

— 1— — L "
p= a—c—d+b

— p'=1 b—c .
P = a—c—d+b»b

o Example: a =4, b =3, c =2, d = 1, satisfying the initial
assumptions: a > d and b > ¢

1 1

. 3_1 nfl_ 1 n—1
=l (4—2—1+3> =1 (4)




Another example of msNE with N players

@ Probability of a person helping, p*

More people makes me less likely to help.



Another example of msNE with N players

n

@ Probability that the person in need receives help, (p*)

1 2 3 - 5 6 7 8 9 10

More people actually make it less likely that the victim is
helped!



@ Intuitively, the new individual in the population brings a
positive and a negative effect on the probability that the
victim is finally helped:

o Positive effect: the additional individual, with his own
probability of help, p*, increases the chance that the victim is

helped.

o Negative effect: the additional individual makes more likely,
that someone will help the victim,thus leading each individual
citizen to reduce his own probability of helping, i.e., p*
decreades in n.

@ However, the fact that (p*)” decreases in n implies that the
negative effect offsets the positive effect.
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