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Looking back...

So far we have been able to �nd the NE of a relatively large
class of games with complete information:

Games with two or several (n > 2) players.
Games where players select among discrete or continuous
actions.

But, can we assure that all complete information games where
players select their actions simultaneously have a NE?

We couldn�t �nd a NE for the matching pennies game!! (Next
slide)
We will be able to claim existence of a NE if we allow players
to randomize their actions.



Remembering the "matching pennies" game...

Recall that this was an example of an anti-coordination game:

1, ­1 ­1, 1

­1, 1 1, ­1

Head Tail

Head

Tail
P1

P2

Indeed, there is no strategy pair in which players select a
particular action 100% of the times.

We need to allow players to randomize their choices.



Another example

Here we have another example of an anti-coordination game
with no psNE:

80, 20 0, 100

10, 90 60, 40

Street
Corner Park

Street
Corner

Park

Police
Officer

Drug DealerSurprise!

We need to allow players randomize their choices (i.e., to play
mixed strategies).



Mixed strategy Nash equilibrium

Harrington: Chapter 7, Watson: Chapter 11.

First, note that if a player plays more than one strategy with
strictly positive probability, then he must be indi¤erent
between the strategies he plays with strictly positive
probability.

Notation: "non-degenerate" mixed strategies denotes a set of
strategies that a player plays with strictly positive probability.

Whereas "degenerate" mixed strategy is just a pure strategy
(because of degenerate probability distribution concentrates all
its probability weight at a single point).



Degenerate Probability Distributions

Example of non-degenerate probability distributions

Prob.

Output, q
0 1 million units

Prob.

Output, q
0 q = 5 q = 10

2
3

1
3



Degenerate Probability Distributions

Example of a degenerate probability distribution

Prob.

Output, q
0 q = 8 units

1

The player (e.g., �rm) puts all probability weight (100%) on
only one of its possible actions: q = 8.



De�nition of msNE:

Consider a strategy pro�le σ = (σ1, σ2, ..., σn) where σi is a
mixed strategy for player i . σ is a msNE if and only if

ui (σi , σ�i ) � ui (s 0i , σ�i ) for all s 0i 2 Si and for all i

That is, σi is a best response of player i to the strategy pro�le
σ�i of the other N � 1 players, σi = BRi (σ�i ).



Notice that we wrote ui (σi , σ�i ) � ui (s0i , σ�i ) instead of
ui (σi , σ�i ) � ui (σ0i , σ�i ).
Why? If a player was using σ0i , then he would indi¤erent
between all pure strategies to which σ0i puts a positive
probability, for example ŝi and ši .

That is why it su¢ ces to check that no player has a pro�table
pure-strategy deviation.



Example 1:Matching pennies

Matching pennies

Player 2
q 1� q

Heads Tails
Player 1 p Heads 1,�1 �1, 1

1� p Tails �1, 1 1,�1
Two alternative interpretations of players�
randomization:

If player 1 is using a mixed strategy, it must be that he
indi¤erent between Heads and Tails
Alternatively, if player 1 is indi¤erent between Heads and Tails,
it must be that player 2 mixes with such probability q such
that player 1 is made indi¤erent between Heads and Tails:

EU1(H) = EU1(T ) () 1q+(1�q)(�1) = (�1)q+ 1(1�q)



Matching pennies

Matching pennies (example of a normal form game with no
psNE):

Player 2
q 1� q

Heads Tails
Player 1 p Heads 1,�1 �1, 1

1� p Tails �1, 1 1,�1

Solving for the EU comparison, we obtain

EU1(H) = EU1(T ) () 1q+(1�q)(�1) = (�1)q+ 1(1�q)

q =
1
2
�! Graphical Interpretation



Matching pennies

How to interpret this cuto¤ of q = 1
2 graphically?

1 We know that if q > 1
2 , then player 2 is very likely playing

Heads. Then, player 1 prefers to play Heads as well (p = 1).

Alternatively, note that q > 1
2 implies EU1(H) > EU1(T ).

2 Go to the �gure on the next slide, and draw p = 1 for every
q > 1

2 .
3 If q < 1

2 , player 2 is likely playing Tails. Then, player 1 prefers
to play Tails as well (p = 0).

4 Graphically, draw p = 0 for every q < 1
2 .



Matching pennies

(Player 2) q

0

1

(Player 1) p
1

q = ½

BR1(q)

From 1st and
2nd steps

From 3rd and
4th steps

Heads

Heads
Tails



Matching pennies

Similarly, if player 2 is using a mixed strategy, it must be that
he is indi¤erent between Heads and Tails:

EU2(H) = EU2(T )

(�1)p + 1(1� p) = 1p + (�1)(1� p) () p = 1
2

(See �gure after next slide)



Matching pennies

Player 2
1 We know that if p > 1

2 , player 1 is likely playing heads. Then
player 2 wants to play tails instead, i.e., q = 0.

2 Go to the �gure on the next slide, and draw q = 0 for all
p > 1

2 .
3 If p < 1

2 , player 1 is likely playing tails. Then player 2 wants to
play heads, i.e., q = 1.

4 Graphically, draw q = 1 for all p < 1
2 .



Matching pennies

(Player 2) q

0

1

(Player 1) p
1p = ½

Heads

Heads
Tails

q = 1 for all p < ½ (3rd and 4th steps)

q = 0 for all p > ½
(1st

d

and 2nd Steps)

BR2(p)



Matching pennies

We can represent these BRFs as follows:

Player 1

BR1(q) =

8<:
Heads if q > 1

2
fHeads, Tailsg if q = 1

2
Tails if q < 1

2

Player 1 is indi¤erent between Heads and Tails when q is
exactly q = 1

2

Player 2

BR2(p) =

8<:
Tails if p > 1

2
fHeads, Tailsg if p = 1

2
Heads if p < 1

2

Player 2 is indi¤erent between Heads and Tails when p is
exactly p = 1

2



Matching pennies

(Player 2) q

0

1

(Player 1) p
1p = ½

Heads

Heads
Tails

BR2(p)

BR1(q)

q = ½

Unique msNE
(No psNE)

Player 1: When q > 1
2 , Player 1 prefers to play Heads

(p = 1); otherwise, Tails.
Player 2: When p > 1

2 , Player 2 prefers to play Tails (q = 0);
otherwise, Heads.



Matching pennies

Therefore, the msNE of this game can be represented as��
1
2
H,
1
2
T
�
,

�
1
2
H,
1
2
T
��

where the �rst parenthesis refers to player 1(row player), and
the player 2(column player).



Battle of the sexes

2. Battle of the sexes (example of a normal form game with 2
psNE already!):

3, 1 0, 0

0, 0 1, 3

Football Opera

Football

Opera
Husband

Wife

p

q

1 ­ p

1 ­ q

If the Husband is using a mixed strategy, it must be that he
indi¤erent between Football and Opera:

EU1(F ) = EU1(O)

3q + 0(1� q) = 0q + 1(1� q)
3q = 1� q

4q = 1 =) q =
1
4



Battle of the sexes

Similarly, if the Wife is using a mixed strategy, it must be that she
is indi¤erent between Football and Opera:

EU2(F ) = EU2(O)9=;Practice!
p =

3
4

Therefore, the msNE of this game can be represented as

msNE =

8>>><>>>:
�
3
4
F ,
1
4
O
�

| {z }
Husband

,

�
1
4
F ,
3
4
O
�

| {z }
Wife

9>>>=>>>;



Battle of the sexes

(Wife) q

0

1

(Husband) p
1p = ¾

Football

Football
Opera

BR2(p) BR1(q)

q = ¼
msNE

Husband: When q > 1
4 , he prefers to go to the Football

game (p = 1); otherwise, the Opera.

Wife: When p > 3
4 , she prefers to go to the Football game

(q = 1); otherwise, the Opera.



Battle of the sexes

Best Responses for Battle of the Sexes are hence:

Player 1 (Husband)

BR1(q) =

8<:
Football if q > 1

4
fFootball, Operag if q = 1

4
Opera if q < 1

4

Player 2 (Wife)

BR2(p) =

8<:
Football if p > 3

4
fFootball, Operag if p = 3

4
Opera if p < 3

4



Battle of the sexes

Note the di¤erences in the cuto¤s: They reveal each player�s
preferences.

Husband: "I will go to the football game as long as there is a
slim probability that my wife will be there."
Wife: "I will only go to the football game if there is more than
a 75% chance my husband will be there."



Prisoner�s Dilemma

3. Prisoner�s Dilemma (One psNE, but are there any msNE?):

­5, ­5 0, ­15

­15, 0 ­1, ­1

Confess Not Confess

Confess

Not
Confess

Player 1

Player 2

p

q

1 ­ p

1 ­ q

If the �rst player is using a mixed strategy, it must be that he
indi¤erent between Confess and Not Confess:

EU1(C ) = EU1(NC )

�5q + 0(1� q) = �15q + (�1)(1� q)
�5q = �15q � 1+ q

9q = �1 =) q = �1
9

?



Prisoner�s Dilemma

Similarly, if player 2 is using a mixed strategy, it must be that
she is indi¤erent between Confess and Not Confess:

EU2(C ) = EU2(NC )

�5p + 0(1� p) = �15p + (�1)(1� p)
�5p = �15p � 1+ p

9p = �1 =) p = �1
9

Hence, such msNE would not assign any positive weight to
strategies that are strictly dominated.

Some textbooks refer to this result by saying that "the support
of the msNE is positive only for strategies that are not strictly
dominated."



Tennis game (msNE with three available strategies)

4. Tennis game (No psNE, but how do we operate with 3
strategies?):

0, 5 2, 3

2, 3 1, 5

C B

C

B

Player 1

Player 2

p

q

1 ­ p

1 ­ q

2, 3

3, 2

5, 0 3, 2 2, 3

F

F

Remember this game? We used it as an example of how to
delete an strategy that was strictly dominated by the
combination of two strategies of that player.

Let�s do it again.



Tennis game (msNE with three available strategies)

F is strictly dominated for Player 1:

0, 5 2, 3

4, 1 , 3

C B

C , B1
Player 1

Player 2
q 1 ­ q

2, 3

,

F

F

3
2
3

7
3

7
3

8
3

(2) +    (5) =      =41
3

2
3

12
3

(3) +    (0) = 11
3

2
3

(1) +    (3) =1
3

2
3

7
3

(5) +    (2) =      =31
3

2
3

9
3

(3) +    (2) =1
3

2
3

7
3

(2) +    (3) =1
3

2
3

8
3

We can hence rule out F from Player 1 because it is strictly
dominated by ( 13C ,

2
3B).



Tennis game (msNE with three available strategies)

After deleting F from Player 1�s available actions, we are left
with:

2, 3 1, 5

5, 0 3,2

C B

Player 1

Player 2

3, 2C

F

B 2, 3

Where we can rule out F from Player 2 because of being
strictly dominated by C .



Tennis game (msNE with three available strategies)

Once strategy F has been deleted for both players, we are left
with:

1, 5

3, 2

C B

Player 1

Player 2

3, 2C

B 2, 3

p

q

1 ­ p

1 ­ q

But we cannot identify any psNE, Let�s check for msNE:
If the �rst player is using a mixed strategy, it must be that he
indi¤erent between C and B:

EU1(C ) = EU1(B) ....	
Practice!

q =
1
3



Tennis game (msNE with three available strategies)

Similarly, if player 2 is using a mixed strategy, it must be that
she is indi¤erent between C and B:

EU2(C ) = EU2(NC ) ...9=;Practice!
p =

1
4

(See �gure on next slide)



Tennis game (msNE with three available strategies)

(Player 2) q

0

1

(Player 1) p
1p = CenterBack

BR2(p)

BR1(q)

q =

msNE

Center

1
3

1
4

Player 1: If q > 1
3 , then Player 1 prefers Back (p = 0);

otherwise Center.

Player 2: If p > 1
4 , then Player 2 prefers Center (q = 1);

otherwise Back.



Tennis game (msNE with three available strategies)

Best Responses in the Tennis Game

Player 1

BR1(q) =

8<:
Back if q > 1

4
fCenter, Backg if q = 1

4
Center if q < 1

4

(Recall that p = 0 implies playing strategy back with
probability one).

Player 2

BR2(p) =

8<:
Center if p > 1

4
fCenter, Backg if p = 1

4
Back if p < 1

4



Graphical representation of BRFs and msNE:

1 Matching pennies (Done X)
2 Battle of the sexes (coordination) (Done X)
3 Additional practice:

1 Lobbying game (Watson page 124).
2 Chicken game (anticoordination).



A few tricks we just learned...

Indi¤erence: If it is optimal to randomize over a collection of
pure strategies, then a player receives the same expected
payo¤ from each of those pure strategies.

He must be indi¤erent between those pure strategies over
which he randomizes.

Odd number: In almost all �nite games (games with a �nite
set of players and available actions), there is a �nite and odd
number of equilibria.

Examples: 1 NE in matching pennies (only one msNE), 3 NE
in BoS (two psNE, one msNE), 1 in PD (only one psNE), etc.

Never use strictly dominated strategies: If a pure strategy
does not survive the IDSDS, then a NE assigns a zero
probability to that pure strategy.

Example: PD game, where NC is strictly dominated, it does
not receive any positive probability.



What if players have three undominated strategies?

Consider the rock-paper-scissors game

0, 0 ­1, 1

1, ­1 0, 0

Rock Paper

Rock

PaperPlayer 1

Player 2

1, ­1

­1, 1

­1, 1 1, ­1 0, 0

Scissors

Scissors

First, note that neither player selects a pure strategy (with
100% probability).



What if players have three undominated strategies?

Second, every player must be mixing between all his three
possible actions, R, P and S.

0, 0 ­1, 1

1, ­1 0, 0

Rock Paper

Rock

PaperPlayer 1

Player 2

1, ­1

­1, 1

­1, 1 1, ­1 0, 0

Scissors

Scissors

If Player 1 only
mixes between
Rock and Paper

Otherwise: if P1 mixes only between Rock and Paper, then
Player 2 prefers to respond with Paper rather than Rock.
But if Player 2 never uses Rock, then Player 1 gets a higher
payo¤ with Scissors than Paper. Contradicton!
Then players cannot be mixing between only two of their
available strategies.



What if players have three undominated strategies?

Are you suspecting that the msNE is σ = ( 13 ,
1
3 ,
1
3 )? You�re

right!

0, 0 ­1, 1

1, ­1 0, 0

Rock Paper

Rock

PaperPlayer 1

Player 2

1, ­1

­1, 1

­1, 1 1, ­1 0, 0

Scissors

Scissors

We must make every player indi¤erent between using Rock,
Paper, or Scissors.

That is, u1(Rock, σ2) = u1(Paper , σ2) = u1(Scissors, σ2) for
Player 1, and

u2(σ1,Rock) = u2(σ1,Paper) = u2(σ1,Scissors) for Player 2.



What if players have three undominated strategies?

Let�s separately �nd each of these expected utilities.
If player 1 chooses Rock (�rst row), he obtains

u1(Rock, σ2) = 0σ2(R) + (�1)σ2(P) + 1(1� σ2(R)� σ2(P))

= �1σ2(P) + 1� σ2(R)� σ2(P)

0, 0 ­1, 1

1, ­1 0, 0

Rock Paper

Rock

PaperPlayer 1

Player 2

1, ­1

­1, 1

­1, 1 1, ­1 0, 0

Scissors

Scissors

σ2(R) σ2(P) 1 ­ σ2(R) ­ σ2(P)First Row



What if players have three undominated strategies?

If player 1 chooses Paper (second row), he obtains

u1(Paper , σ2) = 1σ2(R) + 0σ2(P) + (�1)(1� σ2(R)� σ2(P))

= σ2(R)� 1+ σ2(R) + σ2(P)

0, 0 ­1, 1

1, ­1 0, 0

Rock Paper

Rock

PaperPlayer 1

Player 2

1, ­1

­1, 1

­1, 1 1, ­1 0, 0

Scissors

Scissors

σ2(R) σ2(P) 1 ­ σ2(R) ­ σ2(P)

Second Row



What if players have three undominated strategies?

If player 1 chooses Scissors (third row), he obtains

u1(Scissors, σ2) = (�1)σ2(R) + 1σ2(P) + 0(1� σ2(R)� σ2(P))

= �σ2(R) + σ2(P)

0, 0 ­1, 1

1, ­1 0, 0

Rock Paper

Rock

PaperPlayer 1

Player 2

1, ­1

­1, 1

­1, 1 1, ­1 0, 0

Scissors

Scissors

σ2(R) σ2(P) 1 ­ σ2(R) ­ σ2(P)

Third Row



What if players have three undominated strategies?

Making the three expected utilities

u1(Rock, σ2) = �1σ2(P) + 1� σ2(R)� σ2(P),

u1(Paper , σ2) = σ2(R)� 1+ σ2(R) + σ2(P), and

u1(Scissors, σ2) = �σ2(R) + σ2(P)

equal to each other, we obtain

σ2(R) = σ2(P) = 1� σ2(R)� σ2(P)

Hence, player 2 assigns the same probability weights to his
three available actions, thus implying

σ�2 =

�
1
3
,
1
3
,
1
3

�
A similar argument is applicable to player 1, since players�
payo¤s are symmetric.



Summarizing...

We learned how to �nd msNE in games:

with 2 players, each with 2 available strategies (2x2 matrix)

e.g., matching pennies game, battle of the sexes, etc.

with 2 players, but each having 3 available strategies (3x3
matrix)

e.g., tennis game (which actually reduced to a 2x2 matrix after
deleting strictly dominated strategies), and
the rock-paper-scissors game, where we couldn�t identify
strictly dominated strategies and, hence, had to make players
indi¤erent between their three available strategies.

What about games with 3 players?



More advanced mixed strategy games

What if we have three players, instead of two?
(Harrington pp 201-204). "Friday the 13th!"



More advanced mixed strategy games

0,	0,	0 ­4,	1,	2

1,	­4,	2 2,	2,	­2

Front Back

Front

Back
Tommy

Beth

3,	3,	­2 1,	­4,	2

­4,	1,	2 0,	0,	0

Front Back

Front

Back
Tommy

Beth

Jason,	Front Jason,	Back



More advanced mixed strategy games

Friday the 13th!

0,	0,	0 ­4,	1,	2

1,	­4,	2 2,	2,	­2

Front Back

Front

Back
Tommy

Beth

3,	3,	­2 1,	­4,	2

­4,	1,	2 0,	0,	0

Front Back

Front

Back
Tommy

Beth

Jason,	Front Jason,	Back

1 First step: let�s check for strictly dominated strategies
(none).

2 Second step: let�s check for psNE (none). The movie is
getting interestin!

3 Third step: let�s check for msNE. (note that all strategies are
used by all players), since there are no strictly dominated
strategies.



msNE with three players

Since we could not delete any strictly dominated strategy,
then all strategies must be used by all three players.

In this exercise we need three probabilities, one for each player.

Let�s denote:

t the probability that Tommy goes through the front door
(�rst row in both matrices).
b the probability that Beth goes through the front door (�rst
column in both matrices).
j the probability that Jason goes through the front door
(left-hand matrix).



msNE with three players

Let us start with Jason, EUJ (F ) = EUJ (B), where

EUJ (F ) = tb0+ t(1� b)2| {z }
Tommy goes through
the front door, t

+ (1� t)b2+ (1� t)(1� b)(�2)| {z }
Tommy goes through
the back door, (1�t)

= �2+ 4t + 4b� 6tb

and

EUJ (B) = tb(�2) + t(1� b)2+ (1� t)b2+ (1� t)(1� b)0
= 2t + 2b� 6tb

since EUJ (F ) = EUJ (B) we have

�2+ 4t + 4b� 6tb = 2t + 2b� 6tb () t + b = 1| {z }
Condition (1)

(1)



msNE with three players

Let us now continue with Tommy, EUT (F ) = EUT (B), where

EUT (F ) = bj0+ (1� b)j(�4) + b(1� j)3+ (1� b)(1� j)(1)
= 1+ 2b� 5j + 2bj

and

EUT (B) = bj1+ (1� b)j2+ b(1� j)(�4) + (1� b)(1� j)(0)
= �4b+ 2j + 3bj

since EUT (F ) = EUT (B) we have

1+ 2b� 5j + 2bj = �4b+ 2j + 3bj () 7j � 6b+ bj = 1| {z }
Condition (2)

(2)



msNE with three players

And given that the payo¤s for Tommy and Beth are
symmetric, we must have that Tommy and Beth�s
probabilities coincide, t = b.

Hence we don�t need to �nd the indi¤erence condition
EUB (F ) = EUB (B) for Beth.
Instead, we can use Tommy�s condition (2) (i.e.,
7j � 6b+ bj = 1), to obtain the following condition for Beth:

7j � 6t + tj = 1

We must solve conditions (1),(2) and (3).



First, by symmetry we must have that t = b. Using this result
in condition (1) we obtain

t + b = 1 =) t + t = 1 =) t = b =
1
2

Using this result into condition (2), we �nd

7j � 6b+ bj = 7j � 61
2
+
1
2
j = 1

Solving for j we obtain j = 8
15 .



msNE with three players

Representing the msNE in Friday the 13th:

8>>><>>>:
�
1
2
Front,

1
2
Back

�
| {z }

Tommy

,

�
1
2
Front,

1
2
Back

�
| {z }

Beth

,

�
8
15
Front,

7
15
Back

�
| {z }

Jason

9>>>=>>>;



msNE with three players

Just for fun: What is then the probability that Tommy and
Beth scape from Jason?

They scape if they both go through a door where Jason is not
located.

1
2
1
2

8
15|{z}

Jason goes Front

+
1
2
1
2

7
15|{z}

Jason goes Back

=
15
60

The �rst term represents the probability that both Tommy
and Beth go through the Back door (which occurs with
1
2
1
2 =

1
4 probability) while Jason goes to the Front door.

The second term represents the opposite case: Tommy and
Beth go through the Front door (which occurs with 1

2
1
2 =

1
4

probability) while Jason goes to the Back door.



msNE with three players

Even if they escape from Jason this time, there is still...

There are actually NO sequels:

Their probability of escaping Jason is then ( 1560 )
10,about 1 in

a million !



Testing the Theory

A natural question at this point is how we can empirically
test, as external observers, if individuals behave as predicted
by our theoretical models.

In other words, how can we check if individuals randomize with
approximately the same probability that we found to be
optimal in the msNE of the game?



Testing the Theory

In order to test the theoretical predictions of our models, we
need to �nd settings where players seek to "surprise" their
opponents (so playing a pure strategy is not rational), and
where stakes are high.

Can you think of any?



Penalty kicks in soccer



Penalty kicks in soccer

.65,	.35 .95,	.05

.95,	.05 0,	1

Left Center

Left

CenterKicker

Goalkeeper

.95,	.05

.95,	.05

.95,	.05 .95,	.05 .65,	.35

Right

Right

His	payoffs	represent	the	probability	that	
the	kicker	does	not	score	(That	is	why	

within	a	given	cell,	payoffs	sum	up	to	one).

Payoffs	represent	the	
probability	he	scores.



Penalty kicks in soccer

We should expect soccer players randomize their decision.

Otherwise, the kicker could anticipate where the goalie dives
and kick to the other side. Similarly for the goalie.

Let�s describe the kicker�s expected utility from kicking the
ball left, center or right.



Penalty kicks in soccer

EUKicker(Left) = gl � 0.65+ gr � 0.95+ (1� gr � gl ) � 0.95
= 0.95� 0.3gl (1)

EUKicker(Center) = gl � 0.95+ gr � 0.95+ (1� gr � gl ) � 0
= 0.95(gr + gl ) (2)

EUKicker(Right) = gl � 0.95+ gr � 0.65+ (1� gr � gl ) � 0.95
= 0.95� 0.3gr (3)



Penalty kicks in soccer

Since the kicker must be indi¤erent between all his strategies,
EUKicker(Left) = EUKicker(Right)

0.95� 0.3gl = 0.95� 0.3gr =) gl = gr =) gl = gr = g

Using this information in (2), we have

0.95(g + g) = 1.9g

Hence,

0.95� 0.3g| {z }
EUKicker(Left)

or
EUKicker(Right)

= 1.9g|{z}
EUKicker(Center )

=) g =
0.95
2.2

= 0.43



Penalty kicks in soccer

Therefore,

(σL, σC , σR ) = (0.43|{z}
gl

, 0.14|{z}
From the fact that
gl+gr+gc=1

, 0.43|{z}
gr ,

where gl=gr=g

)

If the set of goalkeepers is similar, we can �nd the same set of
mixed strategies,

(σL, σC , σR ) = (0.43, 0.14, 0.43)



Penalty kicks in soccer

Hence, the probability that a goal is scored is:

Goalkeeper dives left �!

0.43 � ( 0.43|{z}
Kicker
aims
left

�0.65+ 0.14|{z}
Kicker
aims
center

�0.95+ 0.43|{z}
Kicker
aims
right

�0.95)

Goalkeeper dives center �!

+0.14 � (0.43 � 0.95+ 0.14 � 0+ 0.43 � 0.95)

Goalkeeper dives right �!

+0.43 � (0.43 � 0.95+ 0.14 � 0.95+ 0.43 � 0.65)

= 0.82044, i.e., a goal is scored with 82% probability.



Penalty kicks in soccer

Interested in more details?

First, read Harrington pp. 199-201.
Then you can have a look at the article

"Professionals play Minimax" by Ignacio Palacios-Huerta,
Review of Economic Studies, 2003.

This author published a very readable book last year:

Beautiful Game Theory: How Soccer Can Help Economics.
Princeton University Press, 2014.



Summarizing...

So far we have learned how to �nd msNE is games:

with two players (either with 2 or more available strategies).
with three players (e.g., Friday the 13th movie).

What about generalizing the notion of msNE to games with N
players?

Easy! We just need to guarantee that every player is
indi¤erent between all his available strategies.



msNE with N players

Example: "Extreme snob e¤ect" (Watson).
Every player chooses between alternative X and Y (Levi�s and Calvin
Klein). Every player i�s payo¤ is 1 if he selects Y, but if he selects X
his payo¤ is:

2 if no other player chooses X, and
0 if some other player chooses X as well



Let�s check for a symmetric msNE where all players select Y with
probability α. Given that player i must be indi¤erent between X and
Y, EUi (X ) = EUi (Y ), where

EUi (X ) = αn�12| {z }
all other n�1 players select Y

+ (1� αn�1)0| {z }
Not all other players select Y



msNE with N players

and EUi (Y ) = 1, then EUi (X ) = EUi (Y ) implies

αn�12 = 1 () α =

�
1
2

� 1
n�1

Comparative statics of α, the probability a player selects
the "conforming" option Y, α =

� 1
2

� 1
n�1 :

α increases in the size of the population n.

That is, the larger the size of the population, the more likely it
is that somebody else chooses the same as you, and as a
consequence you don�t take the risk of choosing the snob
option X. Instead, you select the "conforming" option Y.



msNE with N players

Probability of choosing strategy Y as a function of the
number of individuals, n.

prob(x)

prob(y)

α	­	Probability

n

α	=	(½)
1

n	­	1

prob(X ) + prob(Y ) = 1, prob(X )...then, (X ) = 1� prob(Y )



Another example of msNE with N players

Another example with N players: The bystander e¤ect
The "bystander e¤ect" refers to the lack of response to help
someone nearby who is in need.

Famous example: In 1964 Kitty Genovese was attacked near
her apartment building in New York City. Despite 38 people
reported having heard her screams, no one came to her aid.
Also con�med in laboratory and �eld studies in psychology.



Another example of msNE with N players

General �nding of these studies:

A person is less likely to o¤er assistance to someone in need
when the person is in a large group than when he/she is alone.

e.g., all those people who heard Kitty Genovese�s cries knew
that many others heard them as well.

In fact, some studies show that the more people that are there
who could help, the less likely help is to occur.

Can this outcome be consistent with players maximizing their
utility level?

Yes, let�s see how.



Another example of msNE with N players

a c

d b

All	ignore At	least	one	
helps

Helps

Ignores
Player

Other	players

where a > d �! so if all ignore, I prefer to help the person in
need.
but b > c �! so, if at least somebody helps, I prefer to
ignore.
Note that assumptions are not so sel�sh : people would prefer
to help if nobody else does.



Another example of msNE with N players

msNE:

Let�s consider a symmetric msNE whereby every player i :

Helps with probability p, and
Ignores with probability 1� p.



Another example of msNE with N players

EUi (Help) = (1� p)n�1 � a| {z }
If everybody
else ignores

+
�
1� (1� p)n�1

�
� c| {z }

If at least one of the
other n�1 players helps

EUi (Ignore) = (1� p)n�1 � d| {z }
If everybody
else ignores

+
�
1� (1� p)n�1

�
� b| {z }

If at least one of the
other n�1 players helps

When a player randomizes, he is indi¤erent between help and
ignore,

EUi (Help) = EUi (Ignore)

(1� p)n�1 � a+
�
1� (1� p)n�1

�
� c

= (1� p)n�1 � d +
�
1� (1� p)n�1

�
� b

=) (1� p)n�1(a� c � d + b) = b� c



Another example of msNE with N players

Solving for p,

(1� p)n�1 =
b� c

a� c � d + b

=) 1� p =
�

b� c
a� c � d + b

� 1
n�1

=) p� = 1�
�

b� c
a� c � d + b

� 1
n�1

Example: a = 4, b = 3, c = 2, d = 1, satisfying the initial
assumptions: a > d and b > c

p� = 1�
�

3� 1
4� 2� 1+ 3

� 1
n�1
= 1�

�
1
4

� 1
n�1



Another example of msNE with N players

Probability of a person helping, p�

More people makes me less likely to help.



Another example of msNE with N players

Probability that the person in need receives help, (p�)n

More people actually make it less likely that the victim is
helped!



Intuitively, the new individual in the population brings a
positive and a negative e¤ect on the probability that the
victim is �nally helped:

Positive e¤ect: the additional individual, with his own
probability of help, p�, increases the chance that the victim is
helped.
Negative e¤ect: the additional individual makes more likely,
that someone will help the victim,thus leading each individual
citizen to reduce his own probability of helping, i.e., p�

decreades in n.

However, the fact that (p�)n decreases in n implies that the
negative e¤ect o¤sets the positive e¤ect.
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