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Applications of Game Theory to Environmental Problems

General Information

Introduction

@ Exam Form A - Portfolio:

o Assignment 1: Game Theory Concepts (week 1).
o Assignment 2: Case Study | (CPR and Market Based Policy,
week 2)
o Assignment 3: Case Study Il (Abatement and Labelling, week
3)
@ Game Theory: An Introduction with Step By-Step Examples,
A. Espinola-Arredondo and F. Munoz-Garcia, Palgrave
MacMillan, December 2023.

e Games, Strategies and Decision Making. Joseph Harrington
Jr. Worth Publishers. (Second edition) 2014.
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e Total nitrogen oxide (NOx) emissions in the European Union
(EU-27) from 1990 to 2022, by sector (in 1,000 metric tons)

@ Energy supply @ Manufacturing and Transport
extractive industry

@ Residential, commercial Agriculture Waste
& institutional

Details: EU; EEA; 1990 10 2022 © Statista 2025 &
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Our Nation's Air 2022 (epa.gov)

Declining National Air Pollutant Concentration Averages oce

Percent Abovenr Bedow NAAGS ()
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Measuring the damages of air pollution in the United States
(Muller and Mendelsohn, 2007, JEEM)

Table1. Gross annual damages ($billion/year)

Pollutant Mortality Morbidity Agriculture Timber Visibility Materials Recreation Total

PM, 5 144 26 0 0 0.4 0 0 17.4
PM,' 0 78 0 0 13 0 0 a1

NO, 44 0.8 0.7 005 0.2 0 0.03 6.2

NH; 8.3 15 0 0 0.2 0 0 10.0
S0, 161 2.9 0 0 0.4 01 0 19.5
voc 96 18 05 003 02 0 0 121
Total 528 17.4 12 008 27 01 0.03 743

PM g represents coarse particles between 2.5 and 10 microns throughout the paper.

@ The largest source of SO2 in the atmosphere is the burning of fossil
fuels by power plants and other industrial facilities,



Applications of Game Theory to Environmental Problems

General Information

Introduction

Biggest emitters in Denmark in 2022
(in million metric tons of carbon dioxide)

*
Aalborg Portland Cement Plant
Esbjerg Pawer Plant a
Nardjylland Power Plant o
Studstrup Power Plant
-
Kalundborg Refinery
6
Fyn Power Plant
a8

Fredericia Refinery

Dan Qil Field

Corm Qil Field

Vestforbranding Clostrup Incineration
Plant

Emission:

Details: Denmark; Ember; 2022 © Statista 2025 &
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@ Air pollution causes decreases in happiness and increases in
depression.

@ Research has shown that people living in places with excessive
amounts of PM2.5 have a heightened risk for dementia by
92%.

o Cogpnitively, it impairs functioning and decision-making.
@ Economically, it hurts work productivity. And socially, it
exacerbates criminal behavior.

@ In a study that analyzed a nine-year panel of 9,360 U.S. cities,
air pollution positively predicted both violent crimes (murder,
rape, robbery, and assault) and property crimes (burglary and
motor vehicle theft).
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what?

@ The three types of policies governments use to deal with
pollution:
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o If the market won't solve its own externality problems, then
what?

@ The three types of policies governments use to deal with
pollution:

@ environmental standards,
@ emissions taxes, and

@ tradable emissions permits.



@ Game Theory as the study of interdependence
e "No man is an island"
@ Definition:

o Game Theory: a formal way to analyze interaction among a
group of rational agents who behave strategically.



@ Several important elemants of this definition help us
understand what is game theory, and what is not:

@ Interaction: If your actions do not affect anybody else, that
is not a situation of interdependence.

@ Group: we are not interested in games you play with your
imaginary friend, but with other people, firms, etc.

@ Rational agents: we assume that agents will behave
rationally especially if the stakes are high and you allow them
sufficient time to think about their available strategies.

o Although we mention some experiments in which individuals
do not behave in a completely rational manner...

e these "anomalies" tend to vanish as long as you allow for
sufficient repetitions, i.e., everybody ends up learning, or you
raise stakes sufficiently (high incentives).



Examples (1):

@ Output decision of two competing firms:
e Cournot model of output competition.
@ Research and Development expenditures:

e They serve as a way to improve a firm's competitiveness in
posterior periods.

e OPEC pricing, how to sustain collusion in the long run...



Examples (2):

@ Sustainable use of natural resources and overexploitation of
the common resource.

@ Use of environmental policy as a policy to promote exports.
e Setting tax emission fees in order to favor domestic firms.
@ Public goods (everybody wants to be a "free-rider").

o | have never played a public good game!

o Are you sure? A group project in class. The slacker you surely
faced was our "free-rider."



Rules of a General Game (informal):(WATSON CH.2,3)

The rules of a game seek to answer the following questions:
@ Who is playing 7« set of players (/)
@ What are they playing with ?«— Set of available actions (S)

© Where each player gets to play 7« Order, or time structure of
the game.

© How much players can gain (or lose) 7«— Payoffs (measured
by a utility function U;(s;, s—;)



@ We assume Common knowledge about the rules of the
game.

@ As a player, | know the answer to the above four questions
(rules of the game)

@ In addition, | know that you know the rules, and...

e that you know that | know that you know the rules,.....(ad
infinitum).



Two ways to graphically represent games

@ Extensive form
o We will use a game tree (next slide).
@ Normal form (also referred as "strategic form").

o We will use a matrix.



Example of a game tree

@ Consider the following sequential-move game played by firms
1 and 2:

o We will use a matrix

/ (30,20)

(f0,0)

(20,10)
Firm 1
No@Production

40,0)
(0,40)

InitialiNode Information@ets

Availableﬂ\ctions(IFoﬁrBFirm 1

Firm 2 (0.0)

Differént el X
Lables TerminalNodes M-




"ANTZ" vs. "A BUG'S LIFE"

PRODUCERANTZ

PRODUCEHABUG'SLIFE” —_
i ]
EISNER
LEAVEDISNEY =
NOTPRODUC PRODUCERNTZ ——
KATENBERG o

KAT

INITIALENODE

STAYANIDISNEY

TERMINALENODES

@ In this example, Katsenberg observes whether Eisner produced
the film "A BUG"S LIFE" or not before choosing to produce
"ANTZ".



PRODUCEH-\NT/Z//' L

INFORMATIONISET g
\ _—
" _—
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e When Katsenberg is at the move (either at node c or d), he
knows that he is at one of these nodes,but he does not know
at which one and the figure captures this lack of information
with a dashed line connecting the nodes.:



The Bug Game

@ We now add an additional stage at the end at which
Katsenberg is allowed to release "Antz" early in case he
produced the movie and Eisner also produced "A bug’s life"
(at node e).

8

Release®®arly

T~

Produce®NTZ
c

Produce® ABUG'SIIFE” Not T
| T,
i ®h
E
b 1
Leaveisne | Produce®NTZ [ Y]
Y NM i ——
K
Initialfode Not

®m Terminalmodes



The Extensive Form of The Bug Game

40,110 f
Release®arly

pmducemM
Qt\/
i
Not

13120 ¢

Produce@ABUG SRIFE’ ~
W 0140 h

LeavelDisney | PruducemNV/v ®s00 |

Stay@nDisney Not

® 35100 n Boo m

@ Let's define the payoff numbers as the profits that each
obtains in the various outcomes, i.e.,in each terminal node.

@ For example, in the event that Katzenberg stays at Disney, we
assume he gets $35 million and Eisner gets $100 million
(terminal node a).



The Bug Game Extensive Form (Abbreviating Labels)

@ We often abbreviate labels in order to make the figure of the
game tree less jammed, as we do next.

_ #40;110
~
&7
K
?// T 13,120
A
CE T e0;140
e
\,// T ' _.e80,0
A I e



Information sets

@ An information set is graphically represented with two or more
nodes connected by a dashed line, (or a "sausage") including
all these connected nodes.

@ It represents that the player called to move at that
information set cannot distinguish between the two or more
actions chosen by his opponent before he is called to move.

@ Hence, the set of available actions must be the same in all the
nodes included on that information set (P and N in the
previous game tree for Katsenberg).

e Otherwise, Katsenberg, despite not observing Eisner's choice,

would be able to infer it by analyzing which are the available
actions he can choose from.



Guided exercise (page 19-20 in Watson)

o Lets practice how to depict a game tree of a strategic
situation on an industry:

@ Firm A decides whether to enter firm B's industry. Firm B
observes this decision.

o If firm A stays out, firm B alone decides whether to advertise.
In this case, firm A obtains zero profits, and firm B obtains $4
million if it advertises and $3.5 million if it does not.

e If firm A enters, both firms simultaneously decide whether to
advertise, obtaining the following payoffs.

o If both advertise, both firms earn $3 million.

o If none of them advertise, both firms earn $5 million.

o If only one firm advertises, then it earns $6 million and the
other firm earns $1 million.



Guided Exercise, (continued)

£ g
Firm@\ ‘\

@ Let E and D denote firm A's initial alternatives of entering
and not entering B'’s industry.

@ Let a and n stand for "advertise" and "not advertise",
respectively.

@ Note that simultaneous advertising decisions are captured by
firm A’s information set.



Strategy: Definition of Strategy

@ Lets practice finding the strategies of firm 1 and 2 in the
following game tree:
o We will use a matrix

FIRM 1

Strategies for firm 1 : H and L.
Strategies for firm 2 : H. H;H. L";L. H;L



Strategy space and Strategy profile

o Strategy space: It is a set comprising each of the possible
strategies of player /.

e From our previous example:
e Sy ={H,L} for firm 1
e Sy ={HH',HL' LH' LL'} for firm 2.
o Strategy profile

o It is a vector (or list) describing a particular strategy for every
player in the game. For instance, in a two-player game

s=(s1,%)

where sy is a specific strategy for firm 1.(for instance, s; = H),
and s, is a specific strategy for firm 2, e.g., s, = LH'.

e More generally, for N players, a strategy profile is a vector with
N components,

s=1(51,5,53,....5n)



Strategy profile:

@ In order to represent the strategies selected by all players
except player i, we write:

S7/’ == (511521 ___,Si71,5/+1' -"1Sn)

(Note that these strategies are potentially different)
@ We can hence write, more compactly, as strategy profile with
only two elements:
The strategy player i selects, s;, and the strategies chosen by
everyone else, s_;, as : s = (s;,5_;)
e Example:
o Consider a strategy profile s which states that player 1 selects
B, player 2 chooses X, and player 3 selects Y, i.e.,
s=(B,X,Y).Then,
e s =(X,Y),
e s ,=(B,Y), and
e s_3=(B,X).



@ Lets practice finding strategy sets in the following game tree:




@ Let's define firm 1 and 2's available strategies in the first
example of a game tree we described a few minutes ago:

_#(30,20)
FIRM 2 —
1 \-l_,_NC FIRM 1: STRATEGIES (EASY!)
| e (60,0)
R S, ={HIGH ,LOW ,NO PROD .}
| . #(20,10)
|
P " FIRM 2: STRATEGIES
S _gueH Y C_
FIRM 16 ~ swo S={CC.CNCNCC,NCNC}
Yo, | \\
”-ﬂﬂ,ﬂn - e(040) | TTAFTER FIRM 1 CHOSE NO
RN o | PRODUCTION
e ]
ElRM 2 —~ e AFTER FIRM 1 CHOSE SOME

POSITIVE CAPACITY (EITHER
HIGH OR LOW)



ANOTHER EXAMPLE: THE CENTIPEDE GAME:

® (4,2)
ouT ouT B

(2,2) (1,3) (3,4)
@ Strategy set for player 2 : Sy = {IN, OUT}

@ Strategy set for player 1 : S; = {IN A, IN B, OUT A, OUT B}

@ More examples on page 27 (Watson)



One second...

@ Why do we have to specify my future actions after selecting
"out" ? Two reasons:

© Because of potential mistakes:

e Imagine | ask you to act on my behalf, but | just inform you to
select "out" at the initial node. However, you make a mistake
(i.e., you play "In"), and player 2 responds with "In" as well.
What would you do now??

o With a strategy (complete contingent plan) you would know
what to do even in events that are considered off the
equillibrium path.

@ Because player 1's action later on affects player 2's actions,
and ...

e ultimately player 2's actions affects player 1's decision on
whether to play "In" or "Out" at the beginning of the game.

e This is related with the concept of backwards induction that
we will discuss when solving sequential-move games.)



Some extensive-form games

@ Let's now find the strategy spaces of a game with three
players:

-® 92,5

w

“® 24,4

-® 054

© @ 3,00
-® 2,22

Q - @ 122
o S = {U, D}

e 5, = {AC, AE, BC, BE}; and
e 53 ={RP,RQ, TP, TQ}



Some extensive-form games (Cont'l)

e S; = {AW,BW,CW,AZ,BZ,CZ}
o S = {X)Y}



@ When a game is played simultaneously, we can represent
it using a matrix

e Example: Prisoners’ Dilemma game.

Prisoner 2
Confess Don't Confess
Prisoner 1 Confess -5, =5 0, —15

Don’t Confess | —15, 0 -1, —1




@ Another example of a simultaneous-move game

o The "battle of the sexes" game.(l know the game is sexist, but
please don't call it the "battle of the sexist" game !)

Wife
Opera Movie
Husband  Opera 1,2 0,0
Movie | 0,0 2,1




@ Yet, another example of a simultaneous-move game

e Pareto-coordination game.

Firm 2
Superior tech. Inferior tech.
Firm 1  Superior tech. 2,2 0,0
Inferior tech. 0,0 1,1




@ Yet, another example of a simultaneous-move game

e The game of "chicken."

Dean
Straight  Swerve
James  Straight 0,0 3,1
Swerve 1,3 2,2




Other examples of the "Chickengame"

Mode Description

Trackors Footloose, (1984,Movie)

Bulldozers Buster and Gob in Arrested Development (2004, TV)
. Two old ladies with motorized wheelchairs in

Wheelchairs

Banzai(2003,TV)

Snowmobiles

"[Two adult males] died in a head-on collision,
earning a tie in the game of chicken they were
playing with their snowmobiles"
<www.seriouslyinternet.com/278.0.htm|>

Film Release Dates

Dreamworks and Disney-Plxar (2004)

Nuclear Weapons

Cuban Missile Crisis (1963)




Normal (Strategic) Form

@ We can alternatively represent simultaneous-move games
using a game tree, as long as we illustrate that players choose
their actions without observing each others' moves, i.e., using
information sets, as we do next for the prisoner’s dilemma

game:
@ Extensive form representation of the Prisoner’s Dilemma game

e (5
P
P2 el V:i‘:‘i\NClii‘\
C 2 //(/ ; ~e (0,-15)
P C | -5-510,-15 "\/VC‘ | e
NC | -15,0 | -1,-1 \\\K:f‘“/{—
e

T e (1)



o Practice :Using a game tree, depict the equivalent extensive -
form representation of the following matrix representing the
"Battle of the Sexes" game.

Wife
Opera Movie
Husband Opera 1,2 0,0
Movie 0,0 2,1




Corresponding extensive and normal forms

@ Only one way to go from extensive to normal form but
potentially several ways to go from normal to extensive form,
as the following example indicates.

__el12)
v
¢ (12)
¥ , /u/ ﬁ\n ~el12
oy 0 .\e\\ B
R .
.4 T~ )
Player 2
C D
Player 1 A |12 1,2
B|31|24

@ For this reason, we have to accurately describe which game
we have in mind (the game tree in the left or right panel).



o Additional practice?

o See "Guided Exercise" in page 34 of Watson.
e This exercise transforms the Katsenberg-Eisner game into its
matrix (normal form) representation.



von Neumann-Morgenstern expected utility function
(WATSON CH.4)

e Expected utility (EU) that player i obtains from playing
strategy s; :

EU (5,') =p1- U(Il) +p2- u(lg) =+ ...

o Example:
/Mﬁh, .( i 5’ _5 )
B
e
ol Moo «0,-15)
| i

\/VC\\ i(/q“”/”’"C’*vu/,‘,_,/' *— 15’ 0)

77\77\7\\N C\\\,

ooe(-1-1)



@ Let's consider that player 1 in the above game has a
Bernoulli's utility function given by u (/) = 3 - /,where |
denotes income.

@ Then, player 1 obtains the following expected utility from

selecting C,
EU, (C) = prob(C)-u((C,C))+ prob(NC)-u((C,NC))
= p-3-(=5)+(1—-p)-0=—15p
where p represents the probability that player 2 chooses C.
@ Similarly, player 1's expected utility from selecting NC is

EU, (NC) = prob(C)-u((NC, C))+ prob(NC) - u((NC, NC))
= p-3x(=15)+(1—p) (3x (—1)) =3—42p



@ In order to challenge ourselves a little bit further, let’s find the
expected utility that player 1 in the following game obtains
when selecting U , Cor D...

e assuming that the probability with which his opponet, player 2,
selects L, M and R are 1/2, 1/4 and 1/4 respectively.

PLAYER 2

1 1w IR

Uuisgl|02]| 40

PLAYER1 C |33 |12 0,0
D|50| 23] 81




o If player 1 believes player 2 will randomize according to
probability distribution 6, = (% %, %) ,then player 1's
expected utility is:

1 1 1
1 1 1 7
1 1 1

e What if player 2 believes player 1 will select ; = (% %, %)

(U,C,D), and player 2 himself plans to randomize usin
(0.3.3)?
@ Try on your own (answer in guided exercise, Ch4 Watson)



e We are done discribing games!!

o We will return to some additional properties of game trees
later on, but only for a second.

o Let’s start solving games!!

o We will use solution concepts that will help us predict the
precise strategy that every player selects in the game.

e Our goal:

e To be as precise as possible in our equilibrium predictions.

e Hence, we will present (and rank) solution concepts in terms of
their predictive power.



Best Response

@ Given the previous three problems when applying dominated
strategies, let's examine another solution concept:

e Using Best responses to find Rationalizable strategies, and
Nash equilibria.



Best Response

o Best response:

o A strategy s is a best response of player i to a strategy profile
s_; selected by all other players if it provides player i a larger
payoff than any of his available strategies s; € S;.

ui(sf,s_i) > uj(sj,s_;) for all s; € S;

o For two players, si is a best response to a strategy s, selected
by player 2 if

u1(s7, ) > ui(s1, s2) forall s € 5
That is, when player 2 selects sy, the utility player 1 obtains

from playing s is higher than by playing any other of his
available strategies.



Rationalizable strategies

@ Given the definition of a best response for player i, we can
interpret that he will never use a strategy that cannot be
rationalized for any beliefs about his opponents’ strategies:

o A strategy s; € S; is never a best response for player i if
there are no beliefs he can sustain about the strategies that his
opponents will select, s_;, for which s; is a best response.

e We can then eliminate strategies that are never a best
response from S;, as they are not rationalizable.

@ In fact, the only strategies that are rationalizable are those
that survive such iterative deletion, as we define next:

o A strategy profile (s}, s5, ..., s,’(l) is rationalizable if it survives
the iterative elimination of those strategies that are never a
best response.

@ Examples, and comparison with IDSDS (see Handout).



Rationalizable Strategies - Example

@ Beauty Contest / Guess the Average [0, 100]

0 25 50 100

The guess which is closest to % the average wins a prize.
"Level 0"Players— They select a random number from [0, 100],
implying an average of 50.

"Level 1" Players —— BR(s_;) = BR(50) =25
"Level 2" Players —— BR(s_1) = BR(25) =12.5

—_ 0



Rationalizable Strategies

How many degrees of iteration do subjects use in experimental
settings?
@ About 1-2 for "regular" people.
e So they say s; = 50 or s; = 25.
e But...

One step more for undergrads who took game theory;
One step more for Portfolio managers;

1-2 steps more for Caltech Econ majors;

About 3 more for usual readers of financial newspapers
(Expansion in Spain and FT in the UK).

For more details, see Rosemarie Nagel "Unraveling in Guessing
Games: An Experimental Study" (1995). American Economic
Review, pp. 1313-26.



Nash equilibrium

@ Besides rationalizability, we can use best responses to identify
the Nash equilibria of a game, as we do next.



Nash equilibrium

o A strategy profile (s, s5, ..., sy) is a Nash equilibrium if every
player's strategy is a best response to his opponent’s
strategies, i.e., if

*
—1

ui(si,s*;) > ui(s;, s;) for all s; € S; and for every player i

@ For two players, a strategy pair (s;, s3) is a Nash equilibrium if
o Player 1's strategy, s, is a best response to player 2's strategy
sy,
ui(sf,s3) > ui(s1,s5) foralls; € S = BRi(s;) = s

e and similarly, player 2's strategy, s5, is a best response to
player 1's strategy s;,

ur(sy,sy) > ua(s1, s5)forallsy € Sy = BRy(s{) = s



Nash equilibrium

@ In short, every player must be playing a best response against
his opponent’s strategies, and
o Players’ conjectures must be correct in equilibrium
e Otherwise, players would have incentives to modify their
strategy.

e This didn't need to be true in the definition of
Rationalizability, where beliefs could be incorrect.

@ The Nash equilibrium strategies are stable, since players don't
have incentives to deviate.



Nash equilibrium

o Note:

o While we have described the concept of best response and
Nash equilibrium for the case of pure strategies (no
randomizations), our definitions and examples can be extended
to mixed strategies too.

o We will next go over several examples of pure strategy Nash
equilibria (psNE) and afterwards examine mixed strategy Nash
equilibria (msNE).



Example 1: Prisoner's Dilemma

Player 2

If Player 2 confesses,
BR(C)=C

Confess @,% 0,@[5

Confess Not Confess

Player 1
Not Confess|| [15,0 @,z

@ Let's start analyzing player 1's best responses.

o If player 2 selects Confess (left column), then player 1's best
response is to confess as well.

@ For compactness, we represent this result as BR;(C) = C,
and underline the payoff that player 1 would obtain after
selecting his best response in this setting, i.e.,—5.



Example 1: Prisoner's Dilemma

Player 2

If Player 2 does not confess,
BRi(NC)=C

Confess |TD,|TD Q,ﬂS

Confess Not Confess

Player 1
Not Confess | [@5,0 a,m

@ Let's continue analyzing player 1's best responses.

e If player 2 selects, instead, Not Confess (right column), then
player 1's best response is to confess.

@ For compactness, we represent this result as BRl(NC) =C,
and underline the payoff that player 1 would obtain after
selecting his best response in this setting, i.e., 0.



Example 1: Prisoner's Dilemma

If Player 1 confesses, Player 2

BR,(C)=C
Confess Not Confess

Confess ,B 0,@[5

==

Player 1

Not Confess | [15,0 @,

@ Let's now move to player 2's best responses.

o If player 1 selects Confess (upper row), then player 2's best
response is to confess.

e For compactness, we represent BRy(C) = C, and underline
the payoff that player 2 would obtain after selecting his best
response in this setting, i.e., —b.



Example 1: Prisoner's Dilemma

Player 2

If Player 1 does not confess,
BR,(NC)=C Confess Not Confess

Confess |?.5,|TD 0,[2[5

Player 1
Not Confess @5,0 @A,z

e Finally, if player 1 selects Not Confess (lower row), then player
2's best response is to confess.
e For compactness, we represent BRy(NC) = C, and underline

the payoff that player 2 would obtain after selecting his best
response in this setting, i.e., 0.



Example 1: Prisoner’'s Dilemma

@ Underlined payoffs hence represent the payoffs that players
obtain when playing their best responses.

@ When we put all underlined payoffs together in the prisoner’s
dilemma game...

Player 2

Confess  Not Confess

Confess 5,5 0,m5

Player 1
Not Confess | E5,0 @A

@ We see that there is only one cell where the payoffs of both
player 1 and 2 were underlined.

@ In this cell, players must be selecting mutual best responses,
implying that this cell is a Nash equilibrium of the game.

@ Hence, we say that the NE of this game is (Confess, Confess)
with a corresponding equilibrium payoff of (—5, —5).



Example 2: Battle of the Sexes

@ Recall that this is an example of a coordination game, such as
those describing technology adoption by two firms.

Wife
Football Opera
Football 3,1 0,0
Husband
Opera 0,0 1,3

@ Husband’s best responses:

e When his wife selects the Football game, his best response is
to also go to the Football game, i.e., BRy(F) = F.

e When his wife selects Opera, his best response is to also go to
the Opera, i.e., BRy(0O) = O.



Example 2: Battle of the Sexes

Wife
Football Opera
Football 3,1 0,0
Husband
Opera 0,0 1,3

o Wife's best responses:

e When her husband selects the Football game, her best response
is to also go to the Football game, i.e., BRy/ (F) = F.

e When her husband selects Opera, her best response is to also
go to the Opera, i.e., BRy (0) = O.



Example 2: Battle of the Sexes

Wife
Football Opera
Football 3,1 0,0
Husband
Opera 0,0 1,3

@ Two cells have all payoffs underlined. These are the two Nash
equilibria of this game:

o (Football, Football) with equilibrium payoff (3,1), and
o (Opera, Opera) with equilibrium payoff (1, 3).



@ Prisoner’s Dilemma — NE = set of strategies surviving
IDSDS

o Battle of the Sexes — NE is a subset of strategies surviving
IDSDS (the entire game).

Therefore, NE has more predictive power than IDSDS.

@ Great!

IDSDS

(Smaller subsets of equilibria indicate
greater predictive power)

~ |




The NE provides more precise equilibrium predictions:

Nash
equilibrium

IDSDS strategy
profiles

All strategy
profiles

Hence, if a strategy profile (s;, sy) is a NE, it must survive IDSDS.
However, if a strategy profile (s}, s;) survives IDSDS, it does not
need to be a NE.



Example 3: Pareto coordination

Player 2
Tech A Tech B
Tech A 2,2 0,0
Player 1
Tech B 0,0 1,1

@ While we can find two NE in this game,(A,A) and (B,B),
there are four strategy profiles surviving IDSDS

e Indeed, since no player has strictly dominated strategies, all
columns and rows survive the application of IDSDS.



Example 3: Pareto coordination

Player 2
Tech A Tech B
Tech A 2,2 0,0
Player 1
Tech B 0,0 1,1

@ While two NE can be sustained, (B,B) yields a lower payoff
than (A,A) for both players.

e Equilibrium (B,B) occurs because, once a player chooses B,
his opponent is better off at B than at A.

@ In other words, they would have to sumultaneously move to A
in order to increase their payoffs.



Example 3: Pareto coordination

@ Such a miscoordination into the "bad equilibrium" (B,B) is
more recurrent than we think:

e Betamax vs. VHS (where VHS plays the role of the inferior
technology B, and Betamax that of the superior technology
A). Indeed, once all your friends have VHS, your best response
is to buy a VHS as well.

e Mac vs. PC (before files were mostly compatible).

e Blu-ray vs. HD-DVD.



Example 4: Anticoordination Game

@ The game of chicken is an example of an anticoordination
game.

Dean
Swerve Straight
Swerve 0,0 a,1
James
Straight 1, A @, 2

@ James’ best responses:

o When Dean selects Swerve, James' best response is to drive
Straight, i.e., BR;(Swerve) = Straight.

e When Dean selects Straight, James' best response is to
Swerve, i.e., BR;(Straight) = Swerve.



Example 4: Anticoordination Game

Dean
Swerve Straight
Swerve 0,0 ma,1
James
Straight 1, A @, @2

o Dean’s best responses:

o When James selects Swerve, Dean'’s best response is to drive
Straight, i.e., BRp(Swerve) = Straight.

e When James selects Straight, Dean’s best response is to
Swerve, i.e., BRp(Straight) = Swerve.



Example 4: Anticoordination Game

Dean

Swerve Straight

Swerve 0,0 a1

James
Straight 1,4 2, 2

@ Two cells have all payoffs underlined. These are the two NE
of this game:
o (Swerve, Straight) with equilibrium payoff (-1,1), and
o (Straight, Swerve) with equilibrium payoff (1,-1).
@ Unline in coordination games, such as the Battle of the Sexes
or technology games, here every player seeks to choose the
opposite strategy of his opponent.



Some Questions about NE:

@ Existence? — all the games analyzed in this course will have
at least one NE (in pure or mixed strategies)

@ Uniqueness? — Small predictive power. Later on we will
learn how to restrict the set of NE.



Example 6: Rock-Paper-Scissors

@ Not all games must have one NE using pure strategies...

Lisa
Rock Paper Scissors
Rock 0,0 A, 1 1A
Bart Paper 1,0 0,0 A, 1
Scissors A, 1 1,a 0,0

o Bart’s best responses:

e If Lisa chooses Rock, then Bart's best response is to choose
Paper, i.e., BRg(Rock) = Paper.
o If Lisa chooses Paper, then Bart's best response is to choose

Scissors, i.e., BRg(Paper) = Scissors.

e If Lisa chooses Scissors, then Bart's best response is to choose
Rock, i.e., BRg(Scissors) = Rock.



Example 6: Rock-Paper-Scissors

Lisa
Rock Paper Scissors
Rock 0,0 @, 1 1,a
Bart Paper 1, A 0,0 @A, 1
Scissors A,1 1,a 0,0

o Lisa’s best responses:

e If Bart chooses Rock, then Lisa's best response is to choose

Paper, i.e., BR; (Rock) = Paper.

o If Bart chooses Paper, then Lisa's best response is to choose
Scissors, i.e., BR; (Paper) = Scissors.
o If Bart chooses Scissors, then Lisa's best response is to choose

Rock, i.e., BR, (Scissors) = Rock.




Example 6: Rock-Paper-Scissors

Rock

Bart Paper

@ In this game, there are no NE using pure strategies!

o But it will have a NE using mixed strategies (In a couple of

weeks).

Scissors

Lisa
Rock Paper Scissors
0,0 @, 1 1A
ia 0,0 @, 1
a,1 1a 0,0




Example 7: Game with Many Strategies

Player 2
w X y z
a 0,1 0,1 1,0 32
b 1,2 2,2 4,0 0,2
Player 1
¢ 2,1 0,1 1,2 1,0
d 3,0 1,0 1,1 31

e Player 1’s best responses:

o If Player 2 chooses w, then Player 1's best response is to
choose d, i.e., BRy(w) = d.

o If Player 2 chooses x, then Player 1's best response is to
choose b, i.e., BRy(x) = b.

o If Player 2 chooses y, then Player 1's best response is to
choose b, i.e., BRi(y) = b.

o If Player 2 chooses z, then Player 1's best response is to
choose a or d, i.e., BRi(z) = {a, d}.



Example 7: Game with Many Strategies

Player 2
w X y z
a 0,1 0,1 1,0 3,2
b 1,2 2,2 4,0 0,2
Player 1
c 2,1 0,1 1,2 1,0
d 3,0 1,0 1,1 31

o Player 2’s best responses:

o If Player 1 chooses a, then Player 2's best response is to

choose z, i.e., BRy(a) = z.

o If Player 1 chooses b, then Player 2's best response is to

choose w, x or z, i.e., BRy(b) = {w, x, z}.

o If Player 1 chooses c, then Player 2's best response is to

choose y, i.e., BRi(c) =y.

o If Player 1 chooses d, then Player 2's best response is to
choose y or z, i.e., BRi(d) = {y, z}.




Example 7: Game with Many Strategies

Player 2
w X y z
a 0,1 0,1 1,0 32
N 1,2 2,2 4,0 0,2
Player 1
¢ 2,1 0,1 1,2 1,0
d 3,0 1,0 1,1 31

@ NE can be applied very easily to games with many strategies.
In this case, there are 3 seperate NE: (b,x), (a,z) and (d,z).

@ Two important points:

o Note that BR cannot be empty: | might be indifferent among
my available strategies, but BR is non-empty.

e Another important point: Players can use weakly dominated
strategies, i.e., a or d by Player 1; y or z by Player 2.




Example 8: The American ldol Fandom

@ We can also find the NE in 3-player games.
e Harrington, pp. 101-102.

o More generally representing a coordination game between
three individuals or firms.

@ "Alicia, Kaitlyn, and Lauren are ecstatic. They've just landed
tickets to attend this week's segment of American ldol. The
three teens have the same favorite among the nine contestants
that remain: Ace Young. They're determined to take this
opportunity to make a statement. While [text]ing, they come
up with a plan to wear T-shirts that spell out "ACE" in large
letters. Lauren is to wear a T-shirt with a big "A," Kaitlyn
with a "C," and Alicia with an "E." If they pull this stunt off,
who knows—they might end up on national television! OMG!



Example 8: The American ldol Fandom

@ While they all like this idea, each is tempted to wear instead
an attractive new top just purchased from their latest
shopping expedition to Bebe. It's now an hour before they
have to leave to meet at the studio, and each is at home
trying to decide between the Bebe top and the lettered
T-shirt. What should each wear?"

Alicia chooses E Alicia chooses Bebe
Kaitlyn Kaitlyn
C Bebe C Bebe
A 2,2,2 0,1,0 A 0,0,1 0,1,1
Lauren Lauren

Bebe| 1,0,0 1,10 Bebe| 1,0,1 1,1,1




Example 8: The American ldol Fandom

Alicia chooses E Alicia chooses Bebe
Kaitlyn Kaitlyn
C Bebe C Bebe
A | 2,22 0,1,0 A | 0,01 0,1,1
Lauren Lauren
Bebe| 1,0,0 1,10 Bebe| 1,0,1 1,11

@ There are 2 psNE: (A,C,E) and (Bebe, Bebe, Bebe)



Games with Continuous Actions Spaces

@ So far, we considered that players select one among a discrete
list of available actions, e.g., s; € { Enter, NotEnter},
si€{x,y, z}.

@ But in some economic settings, agents can select among an
infinite list of actions.

o Examples: an output level g; € R (as in the Cournot game
of output competition),

o A price level p; € Ry (as in the Bertrand game of price
competition),

e Contribution ¢; € R4 to a charity in a public good game,

o Exploitation level x; € Ry of a common pool resource, etc.



Cournot Game of Output Competition

@ We first assume that N = 2 firms compete selling a
homogenous product (no product differentiation).

o Later on (maybe in a homework) you will analyze the case
where firms sell differentiated products (easy! don’t worry).

e Firm i’s total cost function is TCi(q;) = ¢q;.

o Note that this allows for firms to be symmetric in costs,
¢j = ¢j, or asymmetric, ¢; > ¢;.

@ Inverse demand function is linear p(Q) = a — bQ, where
® = g1 + g» denotes the aggregate output, a > c and b > 0.



Cournot Game of Output Competition

@ Since p(Q) = a— bQ, where Q = g1 + g2, the profit
maximization problem for firm 1 is therefore

max m(q.q) = [a—b(g+ @)l —aq

aqi — b(q1 + @)1 — aq
= aqu— bai — bq1q2 — c1qu



Cournot Game of Output Competition

@ Taking first-order conditions with respect to g1,
a—2bgs —bgy —c1 =0
and solving for g;, we obtain

a—q 1

25 2%

q =



Cournot Game of Output Competition

a—¢

o Using g1 = — %qz, note that:

e gi is positive when g» =0, i.e., g1 = 2b , but...
e q; decreases in gp, becoming zero when g, is sufficiently large.
In particular, g1 = 0, when

a—cl_l . a—a

0=



Cournot Game of Output Competition

@ We can hence, report firm 1's profit maximizing output as
follows

a—¢c 1

— 2b 592 if o <
a1(a2) { 0 if g > 259

a—c
b

@ This is firm 1's best response function: it tells firm 1 how
many units to produce in order to maximize profits as a
function of firm 2's output, g» [See figure].



Cournot Game of Output Competition

a—c

1 H a—c

. . — 5q f qo < 2-fl
] Drawmg a smgle BRF: qi1(q2) = :2b 2 2.| _b
1( 2) { IF 5 > a bC1

q

alt,
2b

atty
2b

q2
At this point, gy =0 = %th-

@ In order to find the horizontal intercept, where g; = 0, we
solve for g, as follows

@ Hence, the horizontal intercept of BRF; is q» = *5%




Cournot Game of Output Competition

e Similarly for BRF,: ¢2(q1) =

a—c 1 H a—c
20— 2% if g < 52

0 if g1 > a—bcz

@ Note that we depict BRF, using the same axis as for BRF; in
order to superimpose both BRFs later on.

Q1

at,

S~

Same axis

7]

atr,

) q2




Cournot Game of Output Competition

@ Putting both firms' BRF together... we obtain two figures:

e one for the case in which firms are symmetric in marginal
costs, ¢ = ¢, and

e another figure for the case in which firms are asymmetric,
c > (1.



Cournot Game of Output Competition

e If c1 = ¢, (firms are symmetric in costs),

q1

att, L
S a=q

alty
2b




Cournot Game of Output Competition

@ Since ¢ = o, then

a—QC
2b
a—QC

a—c o
2 (vertical intercepts)

2b
a_

b

@

(horizontal intercepts)



Cournot Game of Output Competition

o If ¢ > ¢ (firm 1 is more competitive),

Q1
atr. g
— 5 BRy(q1)
S =
(gi,g) .~ where gt g;
at;
2b

BRi(q2)

/ (above the 45°Aine)

2b b %



Cournot Game of Output Competition

@ Since ¢ > ¢y,

a—QC
2b
a—QC

>

>

a—c o
2 (vertical intercepts)

2b
a_

b

@

(horizontal intercepts)



Cournot Game of Output Competition

@ How can we find the NE of this game?

o We know that each firm must be using its BRF in equilibrium.

e We must then find the point where BRF; and BRF, cross
each other.

e Assuming an interior solution,

a—c 1 a—c l|la—-co 1
BRRL — o == =32 =5 5| 72 2%
—————

BRF;

and solving for gy,

_a-2a+to
q1 = 35
Similarly for g,
a—20+
PR=—"7F "

3b



Cournot Game of Output Competition

@ What about Corner Solutions?

e Using the figures, we can easily determine a condition for firm
2's equilibrium output, g5, to be zero...

e In particular, the horizontal intercept of firm 2's BRF lies
below the vertical intercept of firm 1's BRF.

e That s, if

a—o a—ac ata
< <~

b 2b 7 <2

@ As depicted in the next figure



Cournot Game of Output Competition

@ Corner Solution with only firm 1 producing

i
(4i,q)
alt,
2b
al,
b
at; att,
2b b %

o Note that (g7, g3) is the only crossing point between BRF;
and BRF;, implying g > 0, but g; = 0.



Cournot Game of Output Competition

@ This corner solution happens when

a—o a—aq ata
b 2b 2

< C

@ Intuition: Firm 1 is super-competitive (High ).



Cournot Game of Output Competition

@ Another Corner Solution with only firm 2 producing:

att,

akky
2b

(q1.93)

|

att, atk,
b 2b a2

e Note that (g7, g3 ) is the only crossing point between BRF;
and BRF;, implying g; > 0, but gq; = 0.



Cournot Game of Output Competition

@ This corner solution happens when

a—o a—aq ata
b 2b 2

> 0

@ Intuition: Firm 2 is super-competitive (Low ¢,).



Cournot Game of Output Competition

@ Hence, aggregate output (assuming interior solutions) is

a—2at+ao  a-2+a 2a-a-—-o
3b 3b B 3b
and the equilibrium price is

Q=q1+q=

p—a—bQ=a—b 2a— ¢ — O :a+c1—|—cz_
3b 3
Q

@ Assuming symmetry (c; = ¢, = ¢), profits are

a+2c a—c (a—c)?
mi=(pmea=\"3"") 3 = g

o Practice: find profits without symmetry. If we assume that
¢ > c1, which firm experiences the highest profit?




Cournot Game of Output Competition

@ This is very similar to the prisoner’'s dilemmal

@ Indeed, if firms coordinate their production to lower
production levels, they would maximize their joint profits.

o Let us show how (for simplicity we assume symmetry in costs).

o First, note that firms would maximize their joint profits by
choosing g1 and g such that

max w1+ = [(a—b(q1+q))q — cqi]
+[(a—b(q1 + q2)) g2 — cqo]
= (a—bQ)Q —cQ

= aQ — bQ?*—cQ



Cournot Game of Output Competition

@ Taking first-order conditions with respect to @, we obtain
a—2bQ—c=0

and solving for @,we obtain the aggregate output level for the

cartel
a—c

2b

@ Since firms are symmetric in costs, each produces half of this
aggregate output level,

Q:

_la—c
2 2b

qi



Cournot Game of Output Competition

Hence, equilibrium price is

a—=c¢ a+tc
p—a—bQ—a—b< T )— >

and profits for every firm i are

S g dtcefazc)  (a—c _(a—¢)?
A AT 4b )~ 8b

which is higher than the individual profit for every firm under

.- (a—c)?
Cournot competition, ~—;—.




Cournot Game of Output Competition

@ What if my firm deviates to Cournot output?

S g = |a_plizca=c a—c
PoT P = 3b_ " _4b 3b
hgps ——
quournot qjCarte/
a—=«cCc
—C
3b
_ 5(a=¢)’
- 36b

(and Firm j makes a profit of S(Zgbc)z).




Cournot Game of Output Competition

@ Putting everything together:

Participate in

Firm 1

e Conditional on firm 2 participating in the cartel, firm 1
<= 0.125 < 0.1388.

Cartel

Compete in
Quantities

Firm 2

Participate in Cartel

Compete in Quantities

(@a-0?* (a-0? 5(a-0?* 5(a-o)?
8b ' 8b 48b 32b
5(a-0?* 5(a-o0)? (a-0? (a-0?
32b ' 48b 9 ' 9b

5(a—c)?

(a—c)?
compares “—p— <

e Conditional on firm 2 competing in quantities, firm 1

36b

a—c)?

2
compares 5(285) < (

9b

e (And similarly for firm 2).

<= 0.1 < 0.111.




@ Hence, deviating to Cournot output levels is a best response
for every firm regardless of whether its rival respects or
violates the cartel agreement.

@ In other words, deviating to Cournot output levels is a strictly
dominant strategy for both firms, and thus constitutes the NE
of this game.

@ How can firms then collide effectively? By interacting for
several periods. (We will come back to collusive practices in
future chapters).



Bertrand Game of Price Competition

Competition in prices. The firm with the lowest price attracts all
consumers. If both firms charge the same price, they share
consumers equally.

@ Any p; < c is strictly dominated by p; > c.
@ No asymmetric Nash equilibrium: (See Figures)

Q If p1 > pp > c, then firm 1 obtains no profit, and it can
undercut firm 2's price to pp > p; > c. Hence, there exists a
profitable deviation, which shows that p; > pp > ¢ cannot be
a psNE.

Q If pp > p1 > c. Similarly, firm 2 obtains no profit, but can
undercut firm 1's price to p; > pp > c. Hence, there exists a
profitable deviation, showing that pp > p; > ¢ cannot be a
psNE.

@ If p1 > p» = ¢, then firm 2 would want to raise its price
(keeping it below p1). Hence, there is a profitable deviation for
firm 2, and p; > p» = ¢ cannot be a psNE.

@ Similarly for pp > p; = c.



Bertrand Game of Price Competition

Qp>p>c

Profitable deviation of firm 1.

Qm>p>c

Profitable deviation of firm 2.



Bertrand Game of Price Competition

Qp>p=c

OQm>p=c




Bertrand Game of Price Competition

@ Therefore, it must be that the psNE is symmetric. If
p1 = pp > ¢, then both firms have incentives to deviate,
undercutting each other's price (keeping it above c, e.g.,
p2 > p1 > c.

c U1=PZ

And similarly for firm 2

@ Hence, p;1 = p» = c is the unique psNE.



Bertrand Game of Price Competition

@ The Bertrand model of price competition predicts intense
competitive pressures until both firms set prices p1 = p» = c.

@ How can the "super-competitive" outcome where
p1 = p2 = ¢ be ameliorated? Two ways:

e Offering price-matching guarantees.
e Product differentiaion



More Problems that Include Continuum Strategy Spaces

Let's move outside the realm of industrial organization. There
are still several games where players select an action among a
continuum of possible actions.

What's ahead...

Tragedy of the commons: how much effort to exert in
fishing, exploiting a forest, etc, incentives to overexploit the
resource.

Tariff setting by two countries: what precise tariff to set.
Charitable giving: how many dollars to give to charity.
Electoral competition: political candidates locate their
platforms along the line (left-right, more or less spending,
more or less security, etc.)

Accident law: how much care a victim and an injurer exert,
given different legal rules.



Tragedy of the Commons

@ Reading: Harrington pp. 164-169.




@ n hunters, each deciding how much effort e; to exert, where
eet+e+...+e,=E

@ Every hunter i's payoff is a function of the total pounds of
mammoth killed Pounds = E(1000 — E)

Pounds

Overexploitation

[ Underexploitation



Tragedy of the Commons

@ From the total pounds of mammoth killed, hunter / obtains a
share that depends on how much effort he contributed relative
: . e
to the entire group, i.e., Z.
o Effort, however, is costly for hunter /, at a rate of 100 per unit
(opportunity cost of one hour of effort = gathering fruit?).

@ Hence, every hunter 's payoff is given by

uiler, e ;) = % E(1000 — E) — 100¢;
A N— N

total pounds cost
share P

cancelling E and rearranging, we obtain

e [1000 — (e; + e +...+e,) | — 100¢;
E




Tragedy of the Commons

o Taking FOCs with respect to ¢,

ai i €—i
”(aee_e):1000—(e1+e2+...+en)—e,-—100:o

and noting that

eatet...te=(at+ete 1+en+...+e)+e,
we can rewrite the above FOC as

900— (1 +e+e_1+ei1+...+e)—26=0

(SOCs are also satisfied and equal to -2)



@ Solving for ¢,

ettet+e_1+e1+...+e
2

e = 450 — (BRF;)

o Intuitively, there exists a strategic substitutability between
efforts:

e the more you hunt, the less prey is left for me.



Tragedy of the Commons

@ Note that for the case of only two hunters,

[
(91:450—52

€

450
BRF;

900 &



Tragedy of the Commons

@ A similar maximization problem (and resulting BRF) can be
found for all hunters, since they are all symmetric.

@ Hence, ef =65 = ... = e, = " (symmetric equilibrium)
implying that ef + &5 + & ; + & +...+e, = (n—1)e".
@ Putting this information into the BRF yeilds

ef+e+e te +...te (n—1)e*
; =450~

e* =450 —

and solving for e*, we obtain

o — 900
41




Tragedy of the Commons

o Comparative statics on the above result:

@ First, note that individual equilibrium effort, e*, is decreasing
in n since

de* 900
=773 <0
on (n+1)

@ Intuitively, this implies that an increase in the number of
potential hunters reduces every hunter's individual effort, since
more hunters are chasing the same set of mammoths. (Why
not gather some fruit instead?)



Tragedy of the Commons

@ Individual effort in equilibrium

Effort \
A\




Tragedy of the Commons

o Comparative statics on the above result:
@ Second, note that aggregate equilibrium effort, ne*, is
increasing in n since

d (ne®) _ 900(n+ 1) — 900n ~ 900 -0
on (n+1)2 -~ (n+1)2
@ Although each hunter hunts less when there are more hunters,
the addition of another hunter offsets that effect, so the total

effort put into hunting goes up.

L Tl e Rt St R e E e

0 1 2 3 4 5 6 7 8 9
Number of hunters (n)



Tragedy of the Commons

o Finally, what about overexploitation?

o We know that overexploitation occurs if E > 500 (the point at
which aggregate meat production is maximized).

o Total effort exceeds 500 if n% > 500, or n > 1.2.

e That is, as long as there are 2 or more hunters, the resource

will be overexploited.



Tragedy of the Commons

@ The exploitation of a common pool resource (fishing grounds,
forests, acquifers, etc.) to a level beyond the level that is
socially optimal is referred to as the "tragedy of the
commons."

o Why does this "tragedy" occur?

o Because when an agent exploits the resource he does not take
into account the negative effect that his action has on the
well-being of other agents exploiting the resource (who now
find a more depleted resource).

e Or more compactly, because every agent does not take into
account the negative externality that his actions impose on
other agents.
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