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Measuring the damages of air pollution in the United States
(Muller and Mendelsohn, 2007, JEEM)

The largest source of SO2 in the atmosphere is the burning of fossil
fuels by power plants and other industrial facilities.
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Air pollution causes decreases in happiness and increases in
depression.

Research has shown that people living in places with excessive
amounts of PM2.5 have a heightened risk for dementia by
92%.

Cognitively, it impairs functioning and decision-making.

Economically, it hurts work productivity. And socially, it
exacerbates criminal behavior.

In a study that analyzed a nine-year panel of 9,360 U.S. cities,
air pollution positively predicted both violent crimes (murder,
rape, robbery, and assault) and property crimes (burglary and
motor vehicle theft).
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tradable emissions permits.
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Game Theory as the study of interdependence

"No man is an island"

De�nition:

Game Theory: a formal way to analyze interaction among a
group of rational agents who behave strategically.



Several important elemants of this de�nition help us
understand what is game theory, and what is not:

Interaction: If your actions do not a¤ect anybody else, that
is not a situation of interdependence.

Group: we are not interested in games you play with your
imaginary friend, but with other people, �rms, etc.

Rational agents: we assume that agents will behave
rationally especially if the stakes are high and you allow them
su¢ cient time to think about their available strategies.

Although we mention some experiments in which individuals
do not behave in a completely rational manner...
these "anomalies" tend to vanish as long as you allow for
su¢ cient repetitions, i.e., everybody ends up learning, or you
raise stakes su¢ ciently (high incentives).



Examples (1):

Output decision of two competing �rms:

Cournot model of output competition.

Research and Development expenditures:

They serve as a way to improve a �rm�s competitiveness in
posterior periods.

OPEC pricing, how to sustain collusion in the long run...



Examples (2):

Sustainable use of natural resources and overexploitation of
the common resource.

Use of environmental policy as a policy to promote exports.

Setting tax emission fees in order to favor domestic �rms.

Public goods (everybody wants to be a "free-rider").

I have never played a public good game!
Are you sure? A group project in class. The slacker you surely
faced was our "free-rider."



Rules of a General Game (informal):(WATSON CH.2,3)

The rules of a game seek to answer the following questions:

1 Who is playing ? set of players (I )
2 What are they playing with ? Set of available actions (S)
3 Where each player gets to play ? Order, or time structure of
the game.

4 How much players can gain (or lose) ? Payo¤s (measured
by a utility function Ui (si , s�i )



1 We assume Common knowledge about the rules of the
game.

As a player, I know the answer to the above four questions
(rules of the game)

In addition, I know that you know the rules, and...

that you know that I know that you know the rules,.....(ad
in�nitum).



Two ways to graphically represent games

Extensive form

We will use a game tree (next slide).

Normal form (also referred as "strategic form").

We will use a matrix.



Example of a game tree

Consider the following sequential-move game played by �rms
1 and 2:

We will use a matrix

Firm 1

Firm 2

(30,20)

(60,0)

(20,10)

(40,0)
(0,40)

(0,0)

Firm 2 does
not know
whether firm
1 chose high
or low
capacity

Information SetsInitial Node

Available Actions For Firm 1

Different
Lables Terminal Nodes

Payoffs for the
First mover First,
and the Second
mover Second

High Capacity

Low Capacity

No Production

Firm 2

NC’
C’

NC

C

NC

C



"ANTZ" vs. "A BUG�S LIFE"

KATENBERG

EISNER

KAT

KAT

INITIAL NODE

TERMINAL NODES

LEAVE DISNEY

STAY IN DISNEY

NOT PRODUCE

PRODUCE “A BUG’S LIFE”

NOT

PRODUCE ANTZ

PRODUCE ANTZ

NOT

In this example, Katsenberg observes whether Eisner produced
the �lm "A BUG"S LIFE" or not before choosing to produce
"ANTZ".



K
E

K

INFORMATION SET

c

d

STAY IN DISNEY

LEAVE DISNEY
NOT PRODUCE

PRODUCE “A BUG’S LIFE”

NOT

PRODUCE ANTZ

PRODUCE ANTZ

NOT

When Katsenberg is at the move (either at node c or d), he
knows that he is at one of these nodes,but he does not know
at which one and the �gure captures this lack of information
with a dashed line connecting the nodes.:



The Bug Game

We now add an additional stage at the end at which
Katsenberg is allowed to release "Antz" early in case he
produced the movie and Eisner also produced "A bug�s life"
(at node e).

K

E

K

c

d

f

g

e

h

b

n

a

m

l

K

Initial node

Terminal nodes

Stay in Disney

Leave Disney
Not produce

Produce “A BUG’S LIFE”

Not

Produce ANTZ

Not

Produce ANTZ
Not

Release early



The Extensive Form of The Bug Game

K

E

K

c

d

40,110 f

13,120 g

e

0,140 h

b

35,100 n

a

0,0 m

80,0 l

K

Stay in Disney

Leave Disney
Not produce

Produce “A BUG’S LIFE”

Not

Produce ANTZ

Not

Produce ANTZ
Not

Release early

Let�s de�ne the payo¤ numbers as the pro�ts that each
obtains in the various outcomes, i.e.,in each terminal node.
For example, in the event that Katzenberg stays at Disney, we
assume he gets $35 million and Eisner gets $100 million
(terminal node a).



The Bug Game Extensive Form (Abbreviating Labels)

We often abbreviate labels in order to make the �gure of the
game tree less jammed, as we do next.



Information sets

An information set is graphically represented with two or more
nodes connected by a dashed line, (or a "sausage") including
all these connected nodes.

It represents that the player called to move at that
information set cannot distinguish between the two or more
actions chosen by his opponent before he is called to move.

Hence, the set of available actions must be the same in all the
nodes included on that information set (P and N in the
previous game tree for Katsenberg).

Otherwise, Katsenberg, despite not observing Eisner�s choice,
would be able to infer it by analyzing which are the available
actions he can choose from.



Guided exercise (page 19-20 in Watson)

Lets practice how to depict a game tree of a strategic
situation on an industry:
Firm A decides whether to enter �rm B�s industry. Firm B
observes this decision.

If �rm A stays out, �rm B alone decides whether to advertise.
In this case, �rm A obtains zero pro�ts, and �rm B obtains $4
million if it advertises and $3.5 million if it does not.
If �rm A enters, both �rms simultaneously decide whether to
advertise, obtaining the following payo¤s.

If both advertise, both �rms earn $3 million.
If none of them advertise, both �rms earn $5 million.
If only one �rm advertises, then it earns $6 million and the
other �rm earns $1 million.



Guided Exercise, (continued)

Firm A

Firm B

Firm A

0,4 5,5

1,6

6,1

3,3

0,3.5

Firm B

D

E

n’

a’

n

a

n

a

n

a

Let E and D denote �rm A�s initial alternatives of entering
and not entering B�s industry.
Let a and n stand for "advertise" and "not advertise",
respectively.
Note that simultaneous advertising decisions are captured by
�rm A�s information set.



Strategy: De�nition of Strategy

Lets practice �nding the strategies of �rm 1 and 2 in the
following game tree:

We will use a matrix

FIRM 2

FIRM 2

FIRM 1

1,1

0,2

2,0

1 1,
2 2

H

L

H

L

H’

L’

Strategies for �rm 1 : H and L.
Strategies for �rm 2 : H. H�;H. L�;L. H;L



Strategy space and Strategy pro�le

Strategy space: It is a set comprising each of the possible
strategies of player i .

From our previous example:

S1 = fH , Lg for �rm 1
S2 = fHH 0,HL0, LH 0, LL0g for �rm 2.

Strategy pro�le
It is a vector (or list) describing a particular strategy for every
player in the game. For instance, in a two-player game

s = (s1, s2)

where s1 is a speci�c strategy for �rm 1.(for instance, s1 = H),
and s2 is a speci�c strategy for �rm 2, e.g., s2 = LH 0.
More generally, for N players, a strategy pro�le is a vector with
N components,

s = (s1, s2, s3, ..., sn)



Strategy pro�le:

In order to represent the strategies selected by all players
except player i, we write:

s�i = (s1, s2, ..., si�1, si+1, ..., sn)

(Note that these strategies are potentially di¤erent)
We can hence write, more compactly, as strategy pro�le with
only two elements:
The strategy player i selects, si , and the strategies chosen by
everyone else, s�i , as : s = (si , s�i )
Example:

Consider a strategy pro�le s which states that player 1 selects
B, player 2 chooses X , and player 3 selects Y , i.e.,
s = (B,X ,Y ).Then,

s�1 = (X ,Y ),
s�2 = (B ,Y ), and
s�3 = (B ,X ).



Lets practice �nding strategy sets in the following game tree:

FIRM 2

FIRM 1

3,3

4,2

2,4

2,20,4

OUT
P

A

P

A

P

A



Let�s de�ne �rm 1 and 2�s available strategies in the �rst
example of a game tree we described a few minutes ago:



ANOTHER EXAMPLE: THE CENTIPEDE GAME:

(2,2) (1,3) (3,4)

(4,2)
1p 1p2p

OUT OUT B

IN IN A

Strategy set for player 2 : S2 = {IN, OUT}

Strategy set for player 1 : S1 = {IN A, IN B, OUT A, OUT B}

More examples on page 27 (Watson)



One second...

Why do we have to specify my future actions after selecting
"out" ? Two reasons:

1 Because of potential mistakes:
Imagine I ask you to act on my behalf, but I just inform you to
select "out" at the initial node. However, you make a mistake
(i.e., you play "In"), and player 2 responds with "In" as well.
What would you do now??
With a strategy (complete contingent plan) you would know
what to do even in events that are considered o¤ the
equillibrium path.

2 Because player 1�s action later on a¤ects player 2�s actions,
and ...

ultimately player 2�s actions a¤ects player 1�s decision on
whether to play "In" or "Out" at the beginning of the game.
This is related with the concept of backwards induction that
we will discuss when solving sequential-move games.)



Some extensive-form games

Let�s now �nd the strategy spaces of a game with three
players:

S1 = {U, D}
S2 = {AC, AE, BC, BE}; and
S3 ={RP,RQ,TP,TQ}



Some extensive-form games (Cont�l)

P2

P1

(2,5)

(5,2)

(5,2)

(2,5)
(2,2)

P1
(3,3)

C

B
A

Z

W

Y

X

Y

X

S1 = {AW,BW,CW,AZ,BZ,CZ}

S2 = {X,Y}



When a game is played simultaneously, we can represent
it using a matrix

Example: Prisoners�Dilemma game.

Prisoner 2
Confess Don�t Confess

Prisoner 1 Confess �5, �5 0, �15
Don�t Confess �15, 0 �1, �1



Another example of a simultaneous-move game

The "battle of the sexes" game.(I know the game is sexist, but
please don�t call it the "battle of the sexist" game !)

Wife
Opera Movie

Husband Opera 1, 2 0, 0
Movie 0, 0 2, 1



Yet, another example of a simultaneous-move game

Pareto-coordination game.

Firm 2
Superior tech. Inferior tech.

Firm 1 Superior tech. 2, 2 0, 0
Inferior tech. 0, 0 1, 1



Yet, another example of a simultaneous-move game

The game of "chicken."

Dean
Straight Swerve

James Straight 0, 0 3, 1
Swerve 1, 3 2, 2



Other examples of the "Chickengame"

Mode Description
Trackors Footloose, (1984,Movie)
Bulldozers Buster and Gob in Arrested Development (2004,TV)

Wheelchairs
Two old ladies with motorized wheelchairs in
Banzai(2003,TV)

Snowmobiles

"[Two adult males] died in a head-on collision,
earning a tie in the game of chicken they were
playing with their snowmobiles"
<www.seriouslyinternet.com/278.0.html>

Film Release Dates Dreamworks and Disney-PIxar (2004)
Nuclear Weapons Cuban Missile Crisis (1963)



Normal (Strategic) Form

We can alternatively represent simultaneous-move games
using a game tree, as long as we illustrate that players choose
their actions without observing each others�moves, i.e., using
information sets, as we do next for the prisoner�s dilemma
game:
Extensive form representation of the Prisoner�s Dilemma game
:

P2
C NC

P1 C -5,-5 0,-15
NC -15,0 -1,-1



Practice :Using a game tree, depict the equivalent extensive -
form representation of the following matrix representing the
"Battle of the Sexes" game.

Wife
Opera Movie

Husband Opera 1,2 0,0
Movie 0,0 2,1



Corresponding extensive and normal forms

Only one way to go from extensive to normal form but
potentially several ways to go from normal to extensive form,
as the following example indicates.

Player 2
C D

Player 1 A 1,2 1,2
B 3,1 2,4

For this reason, we have to accurately describe which game
we have in mind (the game tree in the left or right panel).



Additional practice?

See "Guided Exercise" in page 34 of Watson.
This exercise transforms the Katsenberg-Eisner game into its
matrix (normal form) representation.



von Neumann-Morgenstern expected utility function
(WATSON CH.4)

Expected utility (EU) that player i obtains from playing
strategy si :

EU (si ) = p1 � u (I1) + p2 � u (I2) + ...

Example:



Let�s consider that player 1 in the above game has a
Bernoulli�s utility function given by u (I ) = 3 � I ,where I
denotes income.

Then, player 1 obtains the following expected utility from
selecting C,

EU1 (C ) = prob (C ) � u ((C ,C )) + prob (NC ) � u ((C ,NC ))
= p � 3 � (�5) + (1� p) � 0 = �15p

where p represents the probability that player 2 chooses C.

Similarly, player 1�s expected utility from selecting NC is

EU1 (NC ) = prob (C ) � u ((NC ,C )) + prob (NC ) � u ((NC ,NC ))
= p � 3� (�15) + (1� p) � (3� (�1)) = 3� 42p



In order to challenge ourselves a little bit further, let�s �nd the
expected utility that player 1 in the following game obtains
when selecting U , C or D...

assuming that the probability with which his opponet, player 2,
selects L, M and R are 1/2, 1/4 and 1/4 respectively.

PLAYER 2
1
2L

1
4M

1
4R

U 8,1 0,2 4,0
PLAYER 1 C 3,3 1,2 0,0

D 5,0 2,3 8,1



If player 1 believes player 2 will randomize according to
probability distribution θ2 =

� 1
2 ,
1
4 ,
1
4

�
,then player 1�s

expected utility is:

EU1 (U, θ2) =
1
2
� 8+ 1

4
� 0+ 1

4
� 4 = 5

EU1 (C , θ2) =
1
2
� 3+ 1

4
� 1+ 1

4
� 0 = 7

4

EU1 (D, θ2) =
1
2
� 5+ 1

4
� 2+ 1

4
� 8 = 5

What if player 2 believes player 1 will select θ1 =
� 1
2 ,
1
4 ,
1
4

�
(U,C,D), and player 2 himself plans to randomize using�
0, 12 ,

1
2

�
?

Try on your own (answer in guided exercise, Ch4 Watson)



We are done discribing games!!

We will return to some additional properties of game trees
later on, but only for a second.

Let�s start solving games!!

We will use solution concepts that will help us predict the
precise strategy that every player selects in the game.

Our goal:

To be as precise as possible in our equilibrium predictions.
Hence, we will present (and rank) solution concepts in terms of
their predictive power.



Best Response

Given the previous three problems when applying dominated
strategies, let�s examine another solution concept:

Using Best responses to �nd Rationalizable strategies, and
Nash equilibria.



Best Response

Best response:

A strategy s�i is a best response of player i to a strategy pro�le
s�i selected by all other players if it provides player i a larger
payo¤ than any of his available strategies si 2 Si .

ui (s
�
i , s�i ) � ui (si , s�i ) for all si 2 Si

For two players, s�1 is a best response to a strategy s2 selected
by player 2 if

u1(s
�
1 , s2) � u1(s1, s2) for all s1 2 S1

That is, when player 2 selects s2, the utility player 1 obtains
from playing s�1 is higher than by playing any other of his
available strategies.



Rationalizable strategies

Given the de�nition of a best response for player i , we can
interpret that he will never use a strategy that cannot be
rationalized for any beliefs about his opponents�strategies:

A strategy si 2 Si is never a best response for player i if
there are no beliefs he can sustain about the strategies that his
opponents will select, s�i , for which si is a best response.
We can then eliminate strategies that are never a best
response from Si , as they are not rationalizable.

In fact, the only strategies that are rationalizable are those
that survive such iterative deletion, as we de�ne next:

A strategy pro�le (s�1 , s
�
2 , ..., s

�
N ) is rationalizable if it survives

the iterative elimination of those strategies that are never a
best response.

Examples, and comparison with IDSDS (see Handout).



Rationalizable Strategies - Example

1 Beauty Contest / Guess the Average [0, 100]

0 25 50 100

The guess which is closest to 1
2 the average wins a prize.

"Level 0"Players�!They select a random number from [0, 100],
implying an average of 50.

"Level 1" Players �! BR(s�i ) = BR(50) = 25

"Level 2" Players �! BR(s�1) = BR(25) = 12.5

... �! 0



Rationalizable Strategies

How many degrees of iteration do subjects use in experimental
settings?

About 1-2 for "regular" people.

So they say si = 50 or si = 25.

But...

One step more for undergrads who took game theory;
One step more for Portfolio managers;
1-2 steps more for Caltech Econ majors;
About 3 more for usual readers of �nancial newspapers
(Expansión in Spain and FT in the UK).

For more details, see Rosemarie Nagel "Unraveling in Guessing
Games: An Experimental Study" (1995). American Economic
Review, pp. 1313-26.



Nash equilibrium

Besides rationalizability, we can use best responses to identify
the Nash equilibria of a game, as we do next.



Nash equilibrium

A strategy pro�le (s�1 , s
�
2 , ..., s

�
N ) is a Nash equilibrium if every

player�s strategy is a best response to his opponent�s
strategies, i.e., if

ui (s�i , s
�
�i ) � ui (si , s��i ) for all si 2 Si and for every player i

For two players, a strategy pair (s�1 , s
�
2 ) is a Nash equilibrium if

Player 1�s strategy, s�1 , is a best response to player 2�s strategy
s�2 ,

u1(s
�
1 , s

�
2 ) � u1(s1, s�2 ) for all s1 2 S1 =) BR1(s

�
2 ) = s

�
1

and similarly, player 2�s strategy, s�2 , is a best response to
player 1�s strategy s�1 ,

u2(s
�
1 , s

�
2 ) � u2(s1, s�2 )foralls2 2 S2 =) BR2(s

�
1 ) = s

�
2



Nash equilibrium

In short, every player must be playing a best response against
his opponent�s strategies, and

Players�conjectures must be correct in equilibrium

Otherwise, players would have incentives to modify their
strategy.
This didn�t need to be true in the de�nition of
Rationalizability, where beliefs could be incorrect.

The Nash equilibrium strategies are stable, since players don�t
have incentives to deviate.



Nash equilibrium

Note:

While we have described the concept of best response and
Nash equilibrium for the case of pure strategies (no
randomizations), our de�nitions and examples can be extended
to mixed strategies too.
We will next go over several examples of pure strategy Nash
equilibria (psNE) and afterwards examine mixed strategy Nash
equilibria (msNE).



Example 1: Prisoner�s Dilemma

­5,­5 0,­15

­15,0 ­1,­1

Confess Not	Confess

Confess

Not	Confess
Player	1

Player	2
If	Player	2	confesses,	

BR1(C	)=C

Let�s start analyzing player 1�s best responses.
If player 2 selects Confess (left column), then player 1�s best
response is to confess as well.
For compactness, we represent this result as BR1(C ) = C ,
and underline the payo¤ that player 1 would obtain after
selecting his best response in this setting, i.e.,�5.



Example 1: Prisoner�s Dilemma

­5,­5 0,­15

­15,0 ­1,­1

Confess Not	Confess

Confess

Not	Confess
Player	1

Player	2
If	Player	2	does	not	confess,	

BR1(NC	)=C

Let�s continue analyzing player 1�s best responses.
If player 2 selects, instead, Not Confess (right column), then
player 1�s best response is to confess.
For compactness, we represent this result as BR1(NC ) = C ,
and underline the payo¤ that player 1 would obtain after
selecting his best response in this setting, i.e., 0.



Example 1: Prisoner�s Dilemma

­5,­5 0,­15

­15,0 ­1,­1

Confess Not	Confess

Confess

Not	Confess
Player	1

Player	2If	Player	1	confesses,	
BR2(C	)=C

Let�s now move to player 2�s best responses.
If player 1 selects Confess (upper row), then player 2�s best
response is to confess.
For compactness, we represent BR2(C ) = C , and underline
the payo¤ that player 2 would obtain after selecting his best
response in this setting, i.e., �5.



Example 1: Prisoner�s Dilemma

­5,­5 0,­15

­15,0 ­1,­1

Confess Not	Confess

Confess

Not	Confess
Player	1

Player	2
If	Player	1	does	not	confess,	

BR2(NC	)=C

Finally, if player 1 selects Not Confess (lower row), then player
2�s best response is to confess.

For compactness, we represent BR2(NC ) = C , and underline
the payo¤ that player 2 would obtain after selecting his best
response in this setting, i.e., 0.



Example 1: Prisoner�s Dilemma

Underlined payo¤s hence represent the payo¤s that players
obtain when playing their best responses.
When we put all underlined payo¤s together in the prisoner�s
dilemma game...

­5,­5 0,­15

­15,0 ­1,­1

Confess Not	Confess

Confess

Not	Confess
Player	1

Player	2

We see that there is only one cell where the payo¤s of both
player 1 and 2 were underlined.
In this cell, players must be selecting mutual best responses,
implying that this cell is a Nash equilibrium of the game.
Hence, we say that the NE of this game is (Confess, Confess)
with a corresponding equilibrium payo¤ of (�5,�5).



Example 2: Battle of the Sexes

Recall that this is an example of a coordination game, such as
those describing technology adoption by two �rms.

3,	1 0,	0

0,	0 1,	3

Football Opera

Football

Opera
Husband

Wife

Husband�s best responses:
When his wife selects the Football game, his best response is
to also go to the Football game, i.e., BRH (F ) = F .
When his wife selects Opera, his best response is to also go to
the Opera, i.e., BRH (O) = O.



Example 2: Battle of the Sexes

3,	1 0,	0

0,	0 1,	3

Football Opera

Football

Opera
Husband

Wife

Wife�s best responses:

When her husband selects the Football game, her best response
is to also go to the Football game, i.e., BRW (F ) = F .
When her husband selects Opera, her best response is to also
go to the Opera, i.e., BRW (O) = O.



Example 2: Battle of the Sexes

3,	1 0,	0

0,	0 1,	3

Football Opera

Football

Opera
Husband

Wife

Two cells have all payo¤s underlined. These are the two Nash
equilibria of this game:

(Football, Football) with equilibrium payo¤ (3, 1), and
(Opera, Opera) with equilibrium payo¤ (1, 3).



Prisoner�s Dilemma �! NE = set of strategies surviving
IDSDS

Battle of the Sexes �! NE is a subset of strategies surviving
IDSDS (the entire game).

Therefore, NE has more predictive power than IDSDS.

Great!

IDSDS

NE

(Smaller	subsets	of	equilibria	indicate	
greater	predictive	power)



The NE provides more precise equilibrium predictions:

All	strategy	
profiles

IDSDS	strategy	
profiles

Nash	
equilibrium

Hence, if a strategy pro�le (s�1 , s
�
2 ) is a NE, it must survive IDSDS.

However, if a strategy pro�le (s�1 , s
�
2 ) survives IDSDS, it does not

need to be a NE.



Example 3: Pareto coordination

2,	2 0,	0

0,	0 1,	1

Tech	A Tech	B

Tech	A

Tech	B
Player	1

Player	2

While we can �nd two NE in this game,(A,A) and (B,B),
there are four strategy pro�les surviving IDSDS

Indeed, since no player has strictly dominated strategies, all
columns and rows survive the application of IDSDS.



Example 3: Pareto coordination

2,	2 0,	0

0,	0 1,	1

Tech	A Tech	B

Tech	A

Tech	B
Player	1

Player	2

While two NE can be sustained, (B,B) yields a lower payo¤
than (A,A) for both players.

Equilibrium (B,B) occurs because, once a player chooses B,
his opponent is better o¤ at B than at A.

In other words, they would have to sumultaneously move to A
in order to increase their payo¤s.



Example 3: Pareto coordination

Such a miscoordination into the "bad equilibrium" (B,B) is
more recurrent than we think:

Betamax vs. VHS (where VHS plays the role of the inferior
technology B, and Betamax that of the superior technology
A). Indeed, once all your friends have VHS, your best response
is to buy a VHS as well.
Mac vs. PC (before �les were mostly compatible).
Blu-ray vs. HD-DVD.



Example 4: Anticoordination Game

The game of chicken is an example of an anticoordination
game.

0,	0 ­1,	1

1,	­1 ­2,	­2

Swerve Straight

Swerve

Straight
James

Dean

James�best responses:
When Dean selects Swerve, James�best response is to drive
Straight, i.e., BRJ (Swerve) = Straight.
When Dean selects Straight, James�best response is to
Swerve, i.e., BRJ (Straight) = Swerve.



Example 4: Anticoordination Game

0,	0 ­1,	1

1,	­1 ­2,	­2

Swerve Straight

Swerve

Straight
James

Dean

Dean�s best responses:

When James selects Swerve, Dean�s best response is to drive
Straight, i.e., BRD (Swerve) = Straight.
When James selects Straight, Dean�s best response is to
Swerve, i.e., BRD (Straight) = Swerve.



Example 4: Anticoordination Game

0,	0 ­1,	1

1,	­1 ­2,	­2

Swerve Straight

Swerve

Straight
James

Dean

Two cells have all payo¤s underlined. These are the two NE
of this game:

(Swerve, Straight) with equilibrium payo¤ (-1,1), and
(Straight, Swerve) with equilibrium payo¤ (1,-1).

Unline in coordination games, such as the Battle of the Sexes
or technology games, here every player seeks to choose the
opposite strategy of his opponent.



Some Questions about NE:

1 Existence? �! all the games analyzed in this course will have
at least one NE (in pure or mixed strategies)

2 Uniqueness? �! Small predictive power. Later on we will
learn how to restrict the set of NE.



Example 6: Rock-Paper-Scissors

Not all games must have one NE using pure strategies...

0,	0 ­1,	1

1,	­1 0,	0

Rock Paper

Rock

PaperBart

Lisa

1,	­1

­1,	1

­1,	1 1,	­1 0,	0

Scissors

Scissors

Bart�s best responses:
If Lisa chooses Rock, then Bart�s best response is to choose
Paper, i.e., BRB (Rock) = Paper .
If Lisa chooses Paper, then Bart�s best response is to choose
Scissors, i.e., BRB (Paper) = Scissors.
If Lisa chooses Scissors, then Bart�s best response is to choose
Rock, i.e., BRB (Scissors) = Rock.



Example 6: Rock-Paper-Scissors

0,	0 ­1,	1

1,	­1 0,	0

Rock Paper

Rock

PaperBart

Lisa

1,	­1

­1,	1

­1,	1 1,	­1 0,	0

Scissors

Scissors

Lisa�s best responses:

If Bart chooses Rock, then Lisa�s best response is to choose
Paper, i.e., BRL(Rock) = Paper .
If Bart chooses Paper, then Lisa�s best response is to choose
Scissors, i.e., BRL(Paper) = Scissors.
If Bart chooses Scissors, then Lisa�s best response is to choose
Rock, i.e., BRL(Scissors) = Rock.



Example 6: Rock-Paper-Scissors

0,	0 ­1,	1

1,	­1 0,	0

Rock Paper

Rock

PaperBart

Lisa

1,	­1

­1,	1

­1,	1 1,	­1 0,	0

Scissors

Scissors

In this game, there are no NE using pure strategies!

But it will have a NE using mixed strategies (In a couple of
weeks).



Example 7: Game with Many Strategies

0,	1 0,	1

1,	2 2,	2

w x

a

Player	1

Player	2

1,	0

4,	0

2,	1 0,	1 1,	2

y

3,	2

0,	2

1,	0

3,	0 1,	0 1,	1 3,1

z

b

c

d

Player 1�s best responses:
If Player 2 chooses w, then Player 1�s best response is to
choose d, i.e., BR1(w) = d .
If Player 2 chooses x, then Player 1�s best response is to
choose b, i.e., BR1(x) = b.
If Player 2 chooses y, then Player 1�s best response is to
choose b, i.e., BR1(y) = b.
If Player 2 chooses z, then Player 1�s best response is to
choose a or d, i.e., BR1(z) = fa, dg.



Example 7: Game with Many Strategies

0,	1 0,	1

1,	2 2,	2

w x

a

Player	1

Player	2

1,	0

4,	0

2,	1 0,	1 1,	2

y

3,	2

0,	2

1,	0

3,	0 1,	0 1,	1 3,1

z

b

c

d

Player 2�s best responses:
If Player 1 chooses a, then Player 2�s best response is to
choose z, i.e., BR1(a) = z .
If Player 1 chooses b, then Player 2�s best response is to
choose w, x or z, i.e., BR1(b) = fw , x , zg.
If Player 1 chooses c, then Player 2�s best response is to
choose y, i.e., BR1(c) = y .
If Player 1 chooses d, then Player 2�s best response is to
choose y or z, i.e., BR1(d) = fy , zg.



Example 7: Game with Many Strategies

0,	1 0,	1

1,	2 2,	2

w x

a

Player	1

Player	2

1,	0

4,	0

2,	1 0,	1 1,	2

y

3,	2

0,	2

1,	0

3,	0 1,	0 1,	1 3,1

z

b

c

d

NE can be applied very easily to games with many strategies.
In this case, there are 3 seperate NE: (b,x), (a,z) and (d,z).

Two important points:

Note that BR cannot be empty: I might be indi¤erent among
my available strategies, but BR is non-empty.
Another important point: Players can use weakly dominated
strategies, i.e., a or d by Player 1; y or z by Player 2.



Example 8: The American Idol Fandom

We can also �nd the NE in 3-player games.

Harrington, pp. 101-102.
More generally representing a coordination game between
three individuals or �rms.

"Alicia, Kaitlyn, and Lauren are ecstatic. They�ve just landed
tickets to attend this week�s segment of American Idol. The
three teens have the same favorite among the nine contestants
that remain: Ace Young. They�re determined to take this
opportunity to make a statement. While [text]ing, they come
up with a plan to wear T-shirts that spell out "ACE" in large
letters. Lauren is to wear a T-shirt with a big "A," Kaitlyn
with a "C," and Alicia with an "E." If they pull this stunt o¤,
who knows�they might end up on national television! OMG!



Example 8: The American Idol Fandom

While they all like this idea, each is tempted to wear instead
an attractive new top just purchased from their latest
shopping expedition to Bebe. It�s now an hour before they
have to leave to meet at the studio, and each is at home
trying to decide between the Bebe top and the lettered
T-shirt. What should each wear?"

2,	2,	2 0,	1,	0

1,	0,	0 1,	1,	0

C Bebe

A

Bebe
Lauren

Kaitlyn
Alicia	chooses	E

0,	0,	1 0,	1,	1

1,	0,	1 1,	1,	1

C Bebe

A

Bebe
Lauren

Kaitlyn
Alicia	chooses	Bebe



Example 8: The American Idol Fandom

2,	2,	2 0,	1,	0

1,	0,	0 1,	1,	0

C Bebe

A

Bebe
Lauren

Kaitlyn
Alicia	chooses	E

0,	0,	1 0,	1,	1

1,	0,	1 1,	1,	1

C Bebe

A

Bebe
Lauren

Kaitlyn
Alicia	chooses	Bebe

There are 2 psNE: (A,C,E) and (Bebe, Bebe, Bebe)



Games with Continuous Actions Spaces

So far, we considered that players select one among a discrete
list of available actions, e.g., si 2 fEnter ,NotEnterg,
si 2 fx , y , zg.
But in some economic settings, agents can select among an
in�nite list of actions.

Examples: an output level qi 2 R+ (as in the Cournot game
of output competition),
A price level pi 2 R+ (as in the Bertrand game of price
competition),
Contribution ci 2 R+ to a charity in a public good game,
Exploitation level xi 2 R+ of a common pool resource, etc.



Cournot Game of Output Competition

We �rst assume that N = 2 �rms compete selling a
homogenous product (no product di¤erentiation).

Later on (maybe in a homework) you will analyze the case
where �rms sell di¤erentiated products (easy! don�t worry).

Firm i�s total cost function is TCi (qi ) = ciqi .

Note that this allows for �rms to be symmetric in costs,
ci = cj , or asymmetric, ci > cj .

Inverse demand function is linear p(Q) = a� bQ, where
Q = q1 + q2 denotes the aggregate output, a > c and b > 0.



Cournot Game of Output Competition

Since p(Q) = a� bQ, where Q = q1 + q2, the pro�t
maximization problem for �rm 1 is therefore

max
q1

π1(q1, q2) = [a� b(q1 + q2)]q1 � c1q1

= aq1 � b(q1 + q2)q1 � c1q1
= aq1 � bq21 � bq1q2 � c1q1



Cournot Game of Output Competition

Taking �rst-order conditions with respect to q1,

a� 2bq1 � bq2 � c1 = 0

and solving for q1, we obtain

q1 =
a� c1
2b

� 1
2
q2



Cournot Game of Output Competition

Using q1 = a�c1
2b �

1
2q2, note that:

q1 is positive when q2 = 0, i.e., q1 =
a�c1
2b , but...

q1 decreases in q2, becoming zero when q2 is su¢ ciently large.
In particular, q1 = 0, when

0 =
a� c1
2b

� 1
2
q2 =)

a� c1
b

= q2



Cournot Game of Output Competition

We can hence, report �rm 1�s pro�t maximizing output as
follows

q1(q2) =
� a�c1

2b �
1
2q2 if q2 �

a�c1
b

0 if q2 > a�c1
b

This is �rm 1�s best response function: it tells �rm 1 how
many units to produce in order to maximize pro�ts as a
function of �rm 2�s output, q2 [See �gure].



Cournot Game of Output Competition

Drawing a single BRF: q1(q2) =
� a�c1

2b �
1
2q2 if q2 �

a�c1
b

0 if q2 > a�c1
b

a­c1
2b

­½

At	this	point,	q1	=	0	=																		­							q2.1
2

q1

q2

a­c1
2b

In order to �nd the horizontal intercept, where q1 = 0, we
solve for q2, as follows

0 =
a� c1
2b

� 1
2
q2 =)

a� c1
b

= q2

Hence, the horizontal intercept of BRF1 is q2 = a�c1
b



Cournot Game of Output Competition

Similarly for BRF2: q2(q1) =
� a�c2

2b �
1
2q2 if q1 �

a�c2
b

0 if q1 > a�c2
b

Note that we depict BRF2 using the same axis as for BRF1 in
order to superimpose both BRFs later on.

­½

q1

q2
a­c2
2b

a­c2
b

Same	axis



Cournot Game of Output Competition

Putting both �rms�BRF together... we obtain two �gures:

one for the case in which �rms are symmetric in marginal
costs, c1 = c2, and
another �gure for the case in which �rms are asymmetric,
c2 > c1.



Cournot Game of Output Competition

If c1 = c2, (�rms are symmetric in costs),

q1

q2
a­c2
2b

a­c1
2b

a­c1
b

a­c2
b BR2(q1)

BR1(q2)

q1	=	q2

(q1,q2)*				*

45o



Cournot Game of Output Competition

Since c1 = c2, then

a� c1
2b

=
a� c2
2b

(vertical intercepts)

a� c1
b

=
a� c2
b

(horizontal intercepts)



Cournot Game of Output Competition

If c2 > c1 (�rm 1 is more competitive),

q1

q2
a­c2
2b

a­c1
2b

a­c1
b

a­c2
b BR2(q1)

BR1(q2)

q1	=	q2

(q1,q2)*				*

45o

*						*	where	q1	>	q2

(above	the	45o­line)



Cournot Game of Output Competition

Since c2 > c1,

a� c1
2b

>
a� c2
2b

(vertical intercepts)

a� c1
b

>
a� c2
b

(horizontal intercepts)



Cournot Game of Output Competition

How can we �nd the NE of this game?

We know that each �rm must be using its BRF in equilibrium.
We must then �nd the point where BRF1 and BRF2 cross
each other.
Assuming an interior solution,

BRF1 �! q1 =
a� c1
2b

� 1
2
q2 =

a� c1
2b

� 1
2

0BB@a� c22b
� 1
2
q1| {z }

BRF2

1CCA
and solving for q1,

q1 =
a� 2c1 + c2

3b

Similarly for q2,

q2 =
a� 2c2 + c1

3b



Cournot Game of Output Competition

What about Corner Solutions?

Using the �gures, we can easily determine a condition for �rm
2�s equilibrium output, q�2 , to be zero...
In particular, the horizontal intercept of �rm 2�s BRF lies
below the vertical intercept of �rm 1�s BRF .

That is, if

a� c2
b

<
a� c1
2b

() a+ c1
2

< c2

As depicted in the next �gure



Cournot Game of Output Competition

Corner Solution with only �rm 1 producing

q1

q2
a­c2
2b

a­c1
2b

a­c1
b

a­c2
b

(q1,q2)*				*

Note that (q�1 , q
�
2 ) is the only crossing point between BRF1

and BRF2, implying q�1 > 0, but q
�
2 = 0.



Cournot Game of Output Competition

This corner solution happens when

a� c2
b

<
a� c1
2b

() a+ c1
2

< c2

Intuition: Firm 1 is super-competitive (High c2).



Cournot Game of Output Competition

Another Corner Solution with only �rm 2 producing:

q1

q2
a­c2
2b

a­c1
2b

a­c1
b

a­c2
b

(q1,q2)*				*

Note that (q�1 , q
�
2 ) is the only crossing point between BRF1

and BRF2, implying q�2 > 0, but q
�
1 = 0.



Cournot Game of Output Competition

This corner solution happens when

a� c2
b

>
a� c1
2b

() a+ c1
2

> c2

Intuition: Firm 2 is super-competitive (Low c2).



Cournot Game of Output Competition

Hence, aggregate output (assuming interior solutions) is

Q = q1 + q2 =
a� 2c1 + c2

3b
+
a� 2c2 + c1

3b
=
2a� c1 � c2

3b
and the equilibrium price is

p = a� bQ = a� b

0BB@2a� c1 � c23b| {z }
Q

1CCA =
a+ c1 + c2

3
.

Assuming symmetry (c1 = c2 = c), pro�ts are

πi = (p � c)qi =
�
a+ 2c
3
� c
�
a� c
3b

=
(a� c)2
9b

Practice: �nd pro�ts without symmetry. If we assume that
c2 > c1, which �rm experiences the highest pro�t?



Cournot Game of Output Competition

This is very similar to the prisoner�s dilemma!

Indeed, if �rms coordinate their production to lower
production levels, they would maximize their joint pro�ts.

Let us show how (for simplicity we assume symmetry in costs).

First, note that �rms would maximize their joint pro�ts by
choosing q1 and q2 such that

max π1 + π2 = [(a� b(q1 + q2))q1 � cq1]
+[(a� b(q1 + q2))q2 � cq2]

= (a� bQ)Q � cQ
= aQ � bQ2 � cQ



Cournot Game of Output Competition

Taking �rst-order conditions with respect to Q, we obtain

a� 2bQ � c = 0

and solving for Q,we obtain the aggregate output level for the
cartel

Q =
a� c
2b

Since �rms are symmetric in costs, each produces half of this
aggregate output level,

qi =
1
2
a� c
2b



Cournot Game of Output Competition

Hence, equilibrium price is

p = a� bQ = a� b
�
a� c
2b

�
=
a+ c
2

and pro�ts for every �rm i are

πi = p � qi � cqi =
a+ c
2

�
a� c
2b

�
� c

�
a� c
4b

�
=
(a� c)2
8b

which is higher than the individual pro�t for every �rm under
Cournot competition, (a�c )

2

9b .



Cournot Game of Output Competition

What if my �rm deviates to Cournot output?

πi = pqi � cqi =

26664a� b
0BBB@a� c3b| {z }
qCournoti

+
a� c
4b| {z }
qCartelj

1CCCA
37775 � a� c3b

�c
�
a� c
3b

�
=

5(a� c)2
36b

(and Firm j makes a pro�t of 5(a�c )
2

48b ).



Cournot Game of Output Competition

Putting everything together:

Participate	in	Cartel Compete	in	Quantities

Participate	in	
Cartel

Compete	in	
Quantities

Firm	1

Firm	2

(a	–c)2

8b
(a	–c)2

8b,

5(a	–c)2

32b
5(a	–c)2

48b,
(a	–c)2

9b
(a	–c)2

9b,

5(a	–c)2

48b
5(a	–c)2

32b,

Conditional on �rm 2 participating in the cartel, �rm 1
compares (a�c )

2

8b < 5(a�c )2
36b () 0.125 < 0.1388.

Conditional on �rm 2 competing in quantities, �rm 1
compares 5(a�c )

2

48b < (a�c )2
9b () 0.1 < 0.111.

(And similarly for �rm 2).



Hence, deviating to Cournot output levels is a best response
for every �rm regardless of whether its rival respects or
violates the cartel agreement.

In other words, deviating to Cournot output levels is a strictly
dominant strategy for both �rms, and thus constitutes the NE
of this game.

How can �rms then collide e¤ectively? By interacting for
several periods. (We will come back to collusive practices in
future chapters).



Bertrand Game of Price Competition

Competition in prices. The �rm with the lowest price attracts all
consumers. If both �rms charge the same price, they share
consumers equally.

Any pi < c is strictly dominated by pi � c .
No asymmetric Nash equilibrium: (See Figures)

1 If p1 > p2 > c , then �rm 1 obtains no pro�t, and it can
undercut �rm 2�s price to p2 > p1 > c . Hence, there exists a
pro�table deviation, which shows that p1 > p2 > c cannot be
a psNE.

2 If p2 > p1 > c . Similarly, �rm 2 obtains no pro�t, but can
undercut �rm 1�s price to p1 > p2 > c . Hence, there exists a
pro�table deviation, showing that p2 > p1 > c cannot be a
psNE.

3 If p1 > p2 = c , then �rm 2 would want to raise its price
(keeping it below p1). Hence, there is a pro�table deviation for
�rm 2, and p1 > p2 = c cannot be a psNE.

4 Similarly for p2 > p1 = c .



Bertrand Game of Price Competition

1 p1 > p2 > c

c p1p2

Profitable	deviation	of	firm	1.

2 p2 > p1 > c

c p2p1

Profitable	deviation	of	firm	2.



Bertrand Game of Price Competition

1 p1 > p2 = c

c	=	p2 p1

2 p2 > p1 = c

c	=	p1 p2



Bertrand Game of Price Competition

Therefore, it must be that the psNE is symmetric. If
p1 = p2 > c , then both �rms have incentives to deviate,
undercutting each other�s price (keeping it above c , e.g.,
p2 > p̃1 > c .

c p1	=	p2

p1
~

And	similarly	for	firm	2

Hence, p1 = p2 = c is the unique psNE.



Bertrand Game of Price Competition

The Bertrand model of price competition predicts intense
competitive pressures until both �rms set prices p1 = p2 = c .

How can the "super-competitive" outcome where
p1 = p2 = c be ameliorated? Two ways:

O¤ering price-matching guarantees.
Product di¤erentiaion



More Problems that Include Continuum Strategy Spaces

Let�s move outside the realm of industrial organization. There
are still several games where players select an action among a
continuum of possible actions.

What�s ahead...

Tragedy of the commons: how much e¤ort to exert in
�shing, exploiting a forest, etc, incentives to overexploit the
resource.

Tari¤ setting by two countries: what precise tari¤ to set.
Charitable giving: how many dollars to give to charity.
Electoral competition: political candidates locate their
platforms along the line (left-right, more or less spending,
more or less security, etc.)

Accident law: how much care a victim and an injurer exert,
given di¤erent legal rules.



Tragedy of the Commons

Reading : Harrington pp. 164-169.



n hunters, each deciding how much e¤ort ei to exert, where

e1 + e2 + . . .+ en = E

Every hunter i�s payo¤ is a function of the total pounds of
mammoth killed Pounds = E (1000� E )

Underexploitation Overexploitation



Tragedy of the Commons

From the total pounds of mammoth killed, hunter i obtains a
share that depends on how much e¤ort he contributed relative
to the entire group, i.e., eiE .
E¤ort, however, is costly for hunter i , at a rate of 100 per unit
(opportunity cost of one hour of e¤ort = gathering fruit?).
Hence, every hunter i�s payo¤ is given by

ui (ei , e�i ) =
ei
E|{z}
share

E (1000� E )| {z }
total pounds

� 100ei| {z }
cost

cancelling E and rearranging, we obtain

ei

241000� (e1 + e2 + . . .+ en)| {z }
E

35� 100ei



Tragedy of the Commons

Taking FOCs with respect to ei ,

∂ui (ei , e�i )
∂ei

= 1000� (e1 + e2 + . . .+ en)� ei � 100 = 0

and noting that
e1 + e2 + . . .+ en = (e1 + e2 + ei�1 + ei+1 + . . .+ en) + ei ,
we can rewrite the above FOC as

900� (e1 + e2 + ei�1 + ei+1 + . . .+ en)� 2ei = 0

(SOCs are also satis�ed and equal to -2)



Solving for ei ,

ei = 450�
e1 + e2 + ei�1 + ei+1 + . . .+ en

2
(BRFi )

Intuitively, there exists a strategic substitutability between
e¤orts:

the more you hunt, the less prey is left for me.



Tragedy of the Commons

Note that for the case of only two hunters,

e1 = 450�
e2
2

e1

e2

BRF1

450

900



Tragedy of the Commons

A similar maximization problem (and resulting BRF ) can be
found for all hunters, since they are all symmetric.

Hence, e�1 = e
�
2 = . . . = e�n = e� (symmetric equilibrium)

implying that e�1 + e
�
2 + e

�
i�1 + e

�
i+1 + . . .+ e�n = (n� 1)e�.

Putting this information into the BRF yeilds

e� = 450�
e�1 + e

�
2 + e

�
i�1 + e

�
i+1 + . . .+ e�n

2
= 450� (n� 1)e

�

2

and solving for e�, we obtain

e� =
900
n+ 1



Tragedy of the Commons

Comparative statics on the above result:
First, note that individual equilibrium e¤ort, e�, is decreasing
in n since

∂e�

∂n
= � 900

(n+ 1)2
< 0

Intuitively, this implies that an increase in the number of
potential hunters reduces every hunter�s individual e¤ort, since
more hunters are chasing the same set of mammoths. (Why
not gather some fruit instead?)



Tragedy of the Commons

Individual e¤ort in equilibrium

e� =
900
n+ 1

n

Effort



Tragedy of the Commons

Comparative statics on the above result:
Second, note that aggregate equilibrium e¤ort, ne�, is
increasing in n since

∂ (ne�)
∂n

=
900(n+ 1)� 900n

(n+ 1)2
=

900
(n+ 1)2

> 0

Although each hunter hunts less when there are more hunters,
the addition of another hunter o¤sets that e¤ect, so the total
e¤ort put into hunting goes up.



Tragedy of the Commons

Finally, what about overexploitation?

We know that overexploitation occurs if E > 500 (the point at
which aggregate meat production is maximized).
Total e¤ort exceeds 500 if n 900n+1 > 500, or n > 1.2.
That is, as long as there are 2 or more hunters, the resource
will be overexploited.



Tragedy of the Commons

The exploitation of a common pool resource (�shing grounds,
forests, acquifers, etc.) to a level beyond the level that is
socially optimal is referred to as the "tragedy of the
commons."

Why does this "tragedy" occur?
Because when an agent exploits the resource he does not take
into account the negative e¤ect that his action has on the
well-being of other agents exploiting the resource (who now
�nd a more depleted resource).
Or more compactly, because every agent does not take into
account the negative externality that his actions impose on
other agents.
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