Intermediate Microeconomic Theory

Substitution and Income Effects

- INCOME CHANGES
- PRICE CHANGES
- INCOME AND SUBSTITUTION EFFECTS
- PUTTING INCOME AND SUBSTITUTION EFFECTS TOGETHER
- APPENDIX A. NOT ALL GOODS CAN BE INFERIOR
- APPENDIX B. ALTERNATIVE REPRESENTATION OF INCOME AND SUBSTITUTION EFFECTS

- WE ANALYZE HOW THE DEMAND FOR A GOOD (OPTIMAL CONSUMPTION BUNDLE) CHANGES AS THE CONSUMER'S INCOME INCREASES.
- FOUR WAYS TO MEASURE A CHANGE IN DEMAND:
 - 1. USING THE DERIVATIVE OF DEMAND.
 - 2. USING INCOME ELASTICITY.
 - 3. USING THE INCOME-CONSUMPTION CURVE.
 - 4. USING THE ENGEL CURVE.

1. USING THE DERIVATIVE OF DEMAND.

- FORMALLY, $x(p_x, p_y, I)$ represents consumer demand for good x.
- NORMAL GOODS, A CONSUMER'S DEMAND FOR GOOD x IS NORMAL IF

$$\frac{\partial x(p_x, p_y, I)}{\partial I} > 0.$$

- SHE DEMANDS MORE UNITS OF GOOD x AS HER INCOME INCREASES. *EXAMPLE*: HOLIDAY PACKAGES.
- INFERIOR GOODS. A CONSUMER'S DEMAND FOR GOOD x IS INFERIOR IF

$$\frac{\partial x(p_x, p_y, I)}{\partial I} < 0.$$

• SHE CUT HER CONSUMPTION AS SOON AS SHE CAN AFFORD TO DO SO. EXAMPLE: FOOD STAPLES.

TABLE B.1. OVERVIEW OF SOCIODEMOGRAPHIC AND TRAVEL-RELATED COVARIATES AMONG ALL SURVEY RESPONDENTS AND ALL TRAVELERS IN THE CONSIDERED YEARS.

Variable	Value	n	n		%	
		Overall	Travelers	Overall	Travelers	
Age	18-30years	37,064	27,813	18,9	19.3	
	31-40 years	37,956	29,285	19,3	20,3	
	41-50years	37,200	29,173	18.9	20,2	
	51-60years	34,153	25,648	17.4	17,8	
	61-70years	31,488	21,959	16.0	15.2	
	71-80years	18,490	10,549	9.4	7.3	
Travel year (period)	1983-1989	29,114	18,231	15.1	12.8	
	1990-1999	56,546	42,385	29.4	29.7	
	2000-2010	58,275	44,940	30.3	31.5	
	2011-2018	48,706	37,332	25.3	26.1	
Birth cohort	Born before 1939	43,147	26,184	21.8	17.9	
	Silent generation	26,217	19,638	13.2	13.5	
	Baby Boomer	79,520	61,143	40.1	41.9	
	Generation X	38,584	30,456	19.5	20.9	
	Generation Y	9745	7621	4.9	5.2	
	Generation Z	1064	848	0.5	0.6	
Gender	Male	90,766	67,724	45.8	46.4	
	Female	107,546	78,175	54.2	53.6	
Household net income (weighted	<1000€	10,478	5337	5.3	3.7	
and inflation-adjusted)	1000-1999€	56,926	35,166	28.7	24.1	
	2000-2999€	62,545	47,096	31.5	32.3	
	3000-3999€	41,588	34,738	21.0	23.8	
	4000-4999€	12,659	11,002	6.4	7.5	
	5000-5999€	7718	6778	3.9	4.6	
	≥ 6000€	6398	5782	3.2	4.0	

- EXAMPLE 4.1: INCREASING INCOME IN A COBB-DOUGLAS UTILITY FUNCTION.
 - CONSIDER AN INDIVIDUAL WITH u(x,y)=xy, WHO FACES PRICES p_x , p_y , AND INCOME I.
 - HER OPTIMAL CONSUMPTION FOR GOOD x (I.E., HER DEMAND) IS

$$x = \frac{I}{2p_x}$$

- THIS DEMAND IS INCREASING IN INCOME BECAUSE $\frac{\partial x}{\partial I} = \frac{1}{2p_x} > 0$.
- HENCE GOOD x IS NORMAL IN CONSUMPTION.
- SIMILARLY, THE DEMAND OF GOOD y, $y = \frac{I}{2p_y}$, IS ALSO INCREASING IN INCOME.

2. USING INCOME ELASTICITY.

 WE CAN REPRESENT THE RELATIONSHIP BETWEEN INCOME AND DEMAND BY USING THE FORMULA OF INCOME ELASTICITY,

$$\varepsilon_{x,I} = \frac{\partial x(p_x, p_y, I)}{\partial I} \frac{I}{x(p_x, p_y, I)},$$

WHICH MEASURES THE % CHANGE IN QUANTITY DEMANDED PER 1% CHANGE IN INCOME.

- $\varepsilon_{x,I} > 0$ WHEN THE GOOD IS NORMAL, $\frac{\partial x(p_x,p_y,I)}{\partial I} > 0$.
- $\varepsilon_{x,I} < 0$ WHEN THE GOOD IS INFERIOR, $\frac{\partial x(p_x,p_y,I)}{\partial I} < 0$.

- 2. USING INCOME ELASTICITY (CONT.).
 - A GOOD WITH $\varepsilon_{\chi,I}>1$, IS REGARDED AS LUXURY.
 - AN 1% INCREASE IN INCOME PRODUCES A MORE-THAN-PROPORTIONAL INCREASE IN THE QUANTITY DEMANDED OF THE GOOD.
 - EXAMPLE: ELECTRONIC GADGETS, YACHTS.
 - A GOOD WITH $0 < \varepsilon_{\chi,I} < 1$, IS REGARDED AS NECESSITY.
 - A 1% INCREASE IN INCOME YIELDS A LESS-THAN-PROPORTIONAL INCREASE IN DEMAND.
 - EXAMPLE: WATER, ELECTRICITY.
 - WHEN $\varepsilon_{\chi,I}=0$, the consumer purchases the same amount of the good regardless of Her Income.

2. USING INCOME ELASTICITY (CONT.).

 SUMMARY. TYPES OF GOODS ACCORDING TO THEIR INCOME ELASTICITY.

Income Elasticity, $\mathcal{E}_{\chi,I}$	Type of Good	Example
$\varepsilon_{x,I} < 0$	Inferior	Canned food
$0 < \varepsilon_{x,I} < 1$	Necessity	Water
$\varepsilon_{x,I} > 1$	Luxury	Yachts

Table 4.1

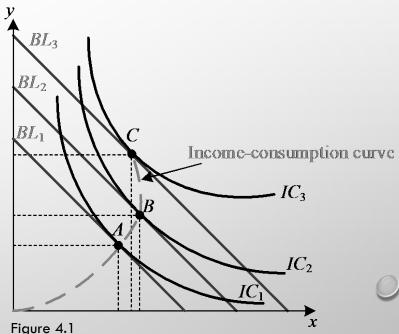
- EXAMPLE 4.2: FINDING INCOME ELASTICITY IN THE COBB-DOUGLAS SCENARIO.
 - FROM EXAMPLE 4.1, THE DEMAND FOR GOOD x IS $x = \frac{I}{2p_x}$, AND $\frac{\partial x}{\partial I} = \frac{1}{2p_x}$.
 - WE CAN EVALUATE THE INCOME ELASTICITY OF GOOD x AS

$$\varepsilon_{x,I} = \frac{\partial x(p_x, p_y, I)}{\partial I} \frac{I}{x(p_x, p_y, I)}$$
$$= \frac{1}{2p_x} \frac{I}{\frac{I}{2p_x}} = \frac{1}{2p_x} 2p_x = 1.$$

• THE GOOD IS NORMAL ($\varepsilon_{\chi,I}>0$), BUT IT IS NEITHER A LUXURY (WHICH REQUIRES $\varepsilon_{\chi,I}>1$) NOR A NECESSITY (WHICH NEEDS $\varepsilon_{\chi,I}<1$).

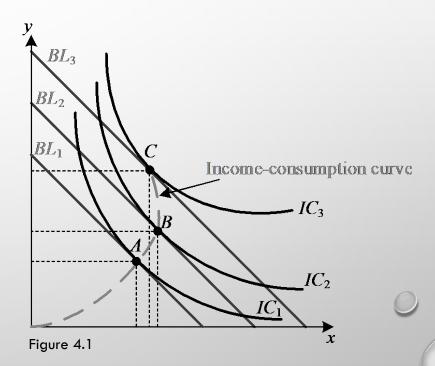
USING THE INCOME-CONSUMPTION CURVE.

- Depict the optimal consumption bundle at initial income I_1 , Bundle A (where IC_1 is tangent to BL_1)
- When income increases, budget line shifts to BL_2 , Bundle B is optimal.
- Income increases again producing BL_3 , Bundle C is optimal.
- The "income-consumption curve" yields after connecting optimal consumption bundles.



3. USING THE INCOME-CONSUMPTION CURVE (CONT.).

- When the slope of the incomeconsumption curve is:
 - Positive (segment A − B), the consumer increases her purchases of both x and y normal goods.
 - Negative (segment B-C), she decreases her purchases of x but increases purchases of y → one of the goods must be inferior.



- EXAMPLE 4.3: FINDING INCOME-CONSUMPTION CURVES.
 - FROM EXAMPLE 4.1, THE DEMAND FOR GOOD x IS $x=\frac{I}{2p_x}$, AND THE DEMAND OF GOOD y IS $y=\frac{I}{2p_y}$.
 - THE RATIO OF THESE DEMANDS IS

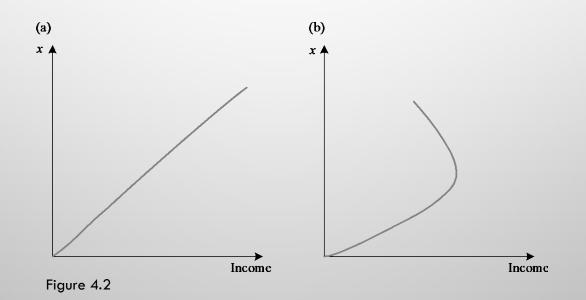
$$\frac{y}{x} = \frac{\frac{1}{2p_y}}{\frac{1}{2p_x}} = \frac{p_x}{p_y}$$

WHICH IS THE SLOPE OF THE RAY CONNECTING THE ORIGIN (0,0) WITH ANY OPTIMAL CONSUMPTION BUNDLE.

- EXAMPLE: WHEN $p_x = \$4$ AND $p_y = \$2$, THIS RATIO IS $\frac{y}{x} = \frac{4}{2} = 2$.
 - THE OPTIMAL CONSUMPTION OF GOODS y and x maintain a two-to-one relationship. Graphically, the incomeconsumption curve is a straight line.

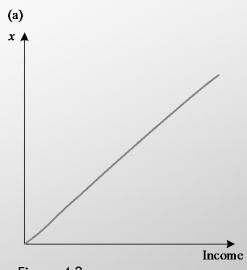
4. USING THE ENGEL CURVE.

 THE ENGEL CURVE REPRESENTS HOW INCOME AFFECTS THE DEMAND OF A GOOD BY PLOTTING THE DEMAND FOR THE GOOD ON THE VERTICAL AXIS, AND THE INCOME ON THE HORIZONTAL AXIS.



15

- 4. USING THE ENGEL CURVE (CONT.).
 - FIGURE 4.2A DEPICTS A POSITIVELY SLOPED ENGEL CURVE,
 WHICH IMPLIES THE GOOD IS NORMAL.
 - The number of units purchased increases with income.
 - Example: Products such as real state.



4. USING THE ENGEL CURVE (CONT.).

- FIGURE 4.2B DEPICTS AN ENGEL CURVE THAT HAS A POSITIVE SLOPE FOR LOW-INCOME LEVELS, BUT EVENTUALLY BECOMES NEGATIVELY SLOPED.
 - The good is normal when the individual is not very rich.
 - She starts regarding the good as inferior once she is sufficiently rich.
 - Example: Canned food or public transportation.

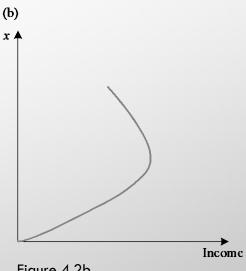


Figure 4.2b

- EXAMPLE 4.3: FINDING ENGEL CURVES.
 - FROM EXAMPLE 4.1, THE DEMAND FOR GOOD x IS $x = \frac{I}{2p_x}$.
 - SOLVING FOR I, WE OBTAIN AN ENGEL CURVE OF

$$I=(2p_x)x.$$

- THIS ENGEL CURVE ORIGINATES AT ZERO, AND HAS A SLOPE OF $2p_x$ (E.G., A SLOPE OF 6 IF $p_x=\$3$).
- THIS SLOPE IS POSITIVE AND CONSTANT IN x, INDICATING THE CONSUMER REGARDS GOOD x AS NORMAL (DEMAND INCREASES IN INCOME) FOR ALL INCOME LEVELS.

- REMARK NOT ALL GOODS CAN BE INFERIOR.
 - FIGURE 4.3 DEPICTS AN INDIVIDUAL FACING INCOME I_1 AT BUDGET LINE BL_1 .
- When her income increases to I_2 , budget line shifts to BL_2 .

Which bundle B does the consumer selects?

- If B lies in region a, she increases consumption of x and y.
- If B lies in region b, she purchase more of y (normal) but few of x (inferior).
- If B lies in region c, she buys few of y (inferior) but more of x (normal).

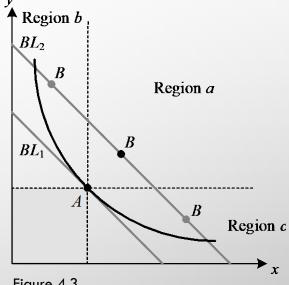
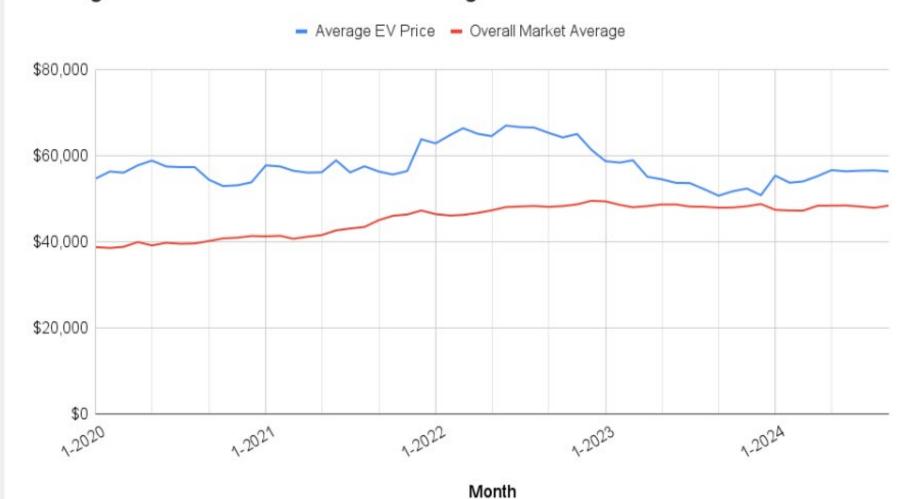


Figure 4.3

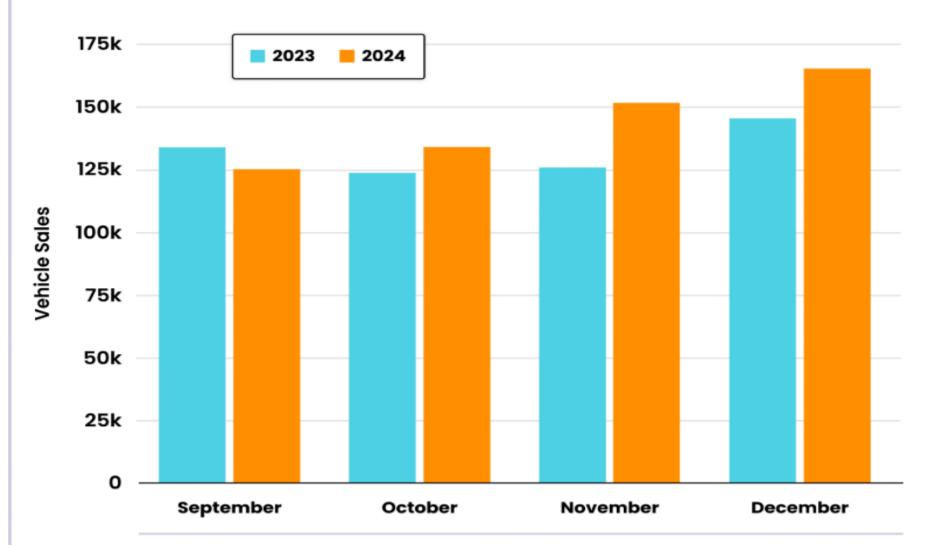
HENCE, EITHER BOTH GOODS ARE NORMAL, OR ONLY ONE OF THEM IS INFERIOR.

- WE ANALYZE HOW DEMAND CHANGES AS THE PRICE OF ONE GOOD INCREASES.
- THREE WAYS TO MEASURE A CHANGE IN PRICE:
 - 1. USING THE DERIVATIVE OF DEMAND.
 - 2. USING INCOME ELASTICITY.
 - 3. USING THE INCOME-CONSUMPTION CURVE.

Average EV Price vs. Overall Market Average



Rebate Uncertainty Drives Record EV Sales into 2025 New plug-in car sales 2023 vs 2024 (BEV + PHEV)



- 1. USING THE DERIVATIVE OF DEMAND.
 - FORMALLY, $x(p_x, p_y, I)$ represent a consumer demand for good x.
 - HER DEMAND CURVE FOR THE GOOD IS NEGATIVELY SLOPED IF

$$\frac{\partial x(p_x, p_y, I)}{\partial p_x} < 0.$$

- SHE PURCHASE FEWER UNITS AS THE GOOD BECOMES MORE EXPENSIVE,
 KEEPING HER INCOME AND PRICE OF ALL OTHER GOODS CONSTANT.
- HER DEMAND CURVE IS POSITIVELY SLOPED IF

$$\frac{\partial x(p_x, p_y, I)}{\partial p_x} > 0.$$

 QUANTITY DEMANDED AND PRICE GO IN THE SAME DIRECTION. THIS TYPES OF GOODS ARE REFERRED AS "GIFFEN GOODS."

- EXAMPLE 4.5: DEMAND AND PRICE CHANGES.
 - FROM EXAMPLE 4.1, THE DEMAND FOR GOOD x IS $x = \frac{I}{2p_x}$.
 - IF THE PRICE OF GOOD x INCREASES BY A SMALL AMOUNT, THE CONSUMER'S PURCHASES RESPOND AS FOLLOWS:

$$\frac{\partial x(p_x, p_y, I)}{\partial p_x} = -\frac{I}{2p_x^2} < 0,$$

GIVEN THAT p_x , I > 0.

- THE DEMAND FUNCTION $x = \frac{I}{2p_x}$ DECREASES IN PRICE .
- GRAPHICALLY, THIS DEMAND FUNCTION HAS A NEGATIVE SLOPE.

- 2. USING THE PRICE-ELASTICITY OF DEMAND.
 - WE CAN REPRESENT THE RELATIONSHIP BETWEEN PRICE OF GOOD x and its demand by using the formula of price-elasticity,

$$\varepsilon_{x,p_x} = \frac{\partial x(p_x, p_y, I)}{\partial p_x} \frac{p_x}{x(p_x, p_y, I)}.$$

- IF WE INCREASE PRICE p_x BY 1%, QUANTITY DEMANDED CHANGES BY ε_{x,p_x} %.
- FOR MOST GOODS, THE DEMAND FUNCTION HAS A NEGATIVE SLOPE, ENTAILING THAT THE PRICE-ELASTICITY MUST BE ALSO NEGATIVE.

- EXAMPLE 4.6: PRICE ELASTICITY AND DEMAND.
 - FROM EXAMPLE 4.1, THE DEMAND FOR GOOD x IS $x = \frac{I}{2p_x}$.
 - USING THE FORMULA OF PRICE ELASTICITY,

$$\varepsilon_{x,p_x} = \frac{\partial x(p_x, p_y, I)}{\partial p_x} \frac{p_x}{x(p_x, p_y, I)}$$

$$= -\frac{I}{2p_x^2} \frac{p_x}{\frac{I}{2p_x}} = -1.$$

• A 1% INCREASE IN PRICE p_x PRODUCES A PROPORTIONAL REDUCTION IN ITS OWN DEMAND (I.E., PURCHASES OF GOOD x DECREASE BY EXACTLY 1%).

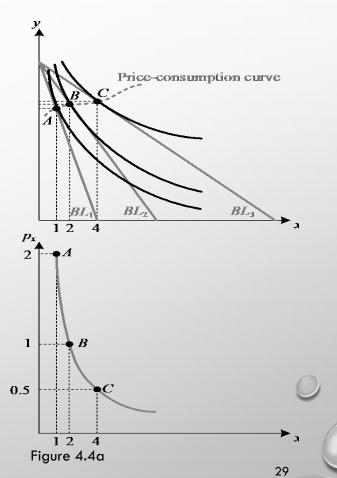
- 2. USING THE PRICE-ELASTICITY OF DEMAND (CONT).
 - THE "CROSS-PRICE ELASTICITY" OF DEMAND FOR GOOD y TO p_x IS,

$$\varepsilon_{y,p_x} = \frac{\partial y(p_x, p_y, I)}{\partial p_x} \frac{p_x}{y(p_x, p_y, I)}.$$

- IF WE INCREASE THE PRICE OF GOOD x BY 1%, THE QUANTITY DEMANDED OF GOOD y CHANGES BY ε_{y,p_x} %.
- IN EXAMPLE 4.1, THE DEMAND FOR GOOD y IS $y=\frac{I}{2p_y}$, IMPLYING THE DEMAND OF GOOD y IS INDEPENDENT OF p_x .
- THEREFORE, $\frac{\partial y(p_x,p_y,I)}{\partial p_x}=0$, ENTAILING $\varepsilon_{y,p_x}=0$. A 1% INCREASE IN THE PRICE OF GOOD x DOES NOT AFFECT THE DEMAND OF GOOD y.

3. USING THE PRICE-CONSUMPTION CURVE.

- Figure 4.4a illustrates a decrease in the price of good x, from $p_x = \$2$ in BL_1 to $p_x = \$1$ in BL_2 , and to $p_x = \$0.5$ in BL_3 .
- This figure also depicts the optimal consumption bundles the consumer selects at each price.
- The graph connects optimal bundles A-C with a curve, which is referred as "price-consumption curve," which has a positive slope at all levels of price p_x .
 - *Example*: Good *x* is housing.



3. USING THE PRICE-CONSUMPTION CURVE (CONT.).

- Figure 4.4b illustrates a situation in which the individual also increases her consumption of x, the good that becomes cheaper.
- For good y,
 - she decreases her purchases when moving from bundle A to B (when p_x decreases from \$2 to \$1);
 - she increases her purchases afterwards (when p_x further decrease to \$0.5).

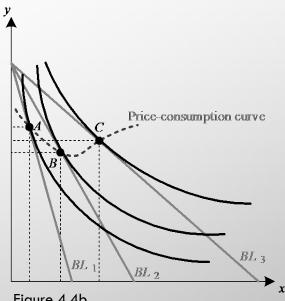


Figure 4.4b

Intermediate Microeconomic Theory

30

- EXAMPLE 4.7: FINDING PRICE-CONSUMPTION CURVES.
 - FROM EXAMPLE 4.3, THE DEMAND FOR GOOD x IS $x=\frac{I}{2p_x}$, AND FOR GOOD y IS $y=\frac{I}{2p_y}$.
 - THE RATIO OF THESE DEMANDS IS

$$\frac{y}{x} = \frac{\frac{I}{2p_y}}{\frac{I}{2p_x}} = \frac{p_x}{p_y}$$

WHICH GIVES THE SLOPE OF THE RAY CONNECTING THE ORIGIN (0,0) WITH ANY OPTIMAL CONSUMPTION BUNDLE.

- AN INCREASE IN p_x , INCREASES THE VALUE OF THE RATIO. THE CONSUMER MOVES TO OPTIMAL BUNDLES WITH MORE y AND LESS x.
- AN INCREASE IN p_y , DECREASES THE VALUE OF THE RATIO. THE CONSUMER PURCHASES MORE OF x BUT LESS OF y.

INCOME AND SUBSTITUTION EFFECTS

Intermediate Microeconomic Theory

32

INCOME AND SUBSTITUTION EFFECTS

- AN INCREASE IN THE QUANTITY DEMANDED AFTER A PRICE DECREASE PRODUCES 2 SIMULTANEOUS EFFECTS:
 - INCOME EFFECT.
 - SUBSTITUTION EFFECT.

- INCOME EFFECT (IE). THE CHANGE IN THE QUANTITY
 DEMANDED DUE TO AN INCREASE IN PURCHASING POWER,
 WITH THE PRICE OF THE ITEM HELD CONSTANT.
 - A CHEAPER GOOD x ALLOWS THE INDIVIDUAL TO AFFORD MORE UNITS OF ALL GOODS (I.E., LARGER PURCHASING POWER).
- AN INCREASE IN INCOME CAN INDUCE THE CONSUMER TO INCREASE (DECREASE) HER PURCHASES OF A GOOD IF SHE REGARDS IT AS NORMAL (INFERIOR), ALLOWING FOR POSITIVE (NEGATIVE) INCOME EFFECTS.

SUBSTITUTION EFFECT

- SUBSTITUTION EFFECT (SE). THE CHANGE IN THE QUANTITY DEMANDED DUE TO A CHANGE IN ITS PRICE, HOLDING THE UTILITY LEVEL CONSTANT.
 - THE QUANTITY CHANGE IS DUE TO A CHANGE IN THE RELATIVE PRICE FOR THE TWO GOODS, AND NOT DUE AN INCREASE IN THE CONSUMER'S PURCHASING POWER.

 AFTER A PRICE DECREASE (INCREASE), THE SUBSTITUTION EFFECT ALWAYS LEAD TO AN INCREASE (DECREASE) IN THE QUANTITY DEMANDED OF THE GOOD THAT BECAME RELATIVELY LESS (MORE) EXPENSIVE.

PUTTING INCOME AND SUBSTITUTION EFFECTS TOGETHER

- IE and SE of a price decrease for normal goods.
 - When facing BL_1 , the consumer selects A, where she reaches IC_1 , purchasing x_A .
 - When the price of $x \downarrow$, the budget line pivots upward to BL_2 , and she chooses bundle C with x_C .
 - The difference $x_C x_A$, measures the total effect (TE).

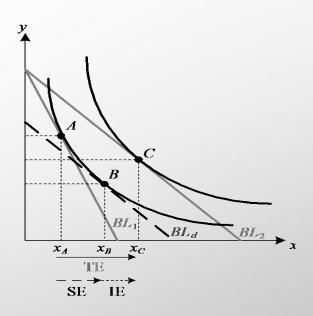


Figure 4.5

- IE and SE of a price decrease for normal goods (cont.).
 - To separate TE into substitution effects (SE) and income effects (IE), we need to shift BL_2 downward (reducing her income) to make her reach the same utility level as before the price change.
 - The resulting BL_d is parallel to BL_2 , having the final price ratio. And it is tangent to IC_1 at bundle B, where she purchases x_B .

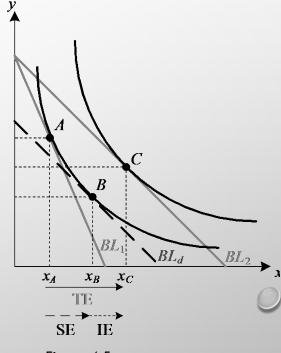


Figure 4.5

- IE and SE of a price decrease for <u>normal</u> goods (cont.).
 - 1. The increase in consumption from x_A to x_B reflects the substitution effect (SE).
 - 2. The increase in consumption from x_B to x_C reflects the income effect (IE).
 - 3. The sum of SE and IE is the total effect (TE).

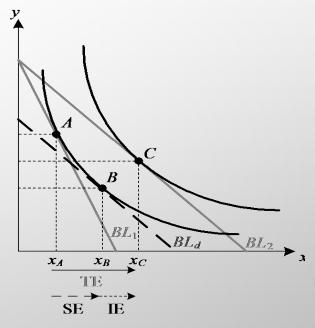
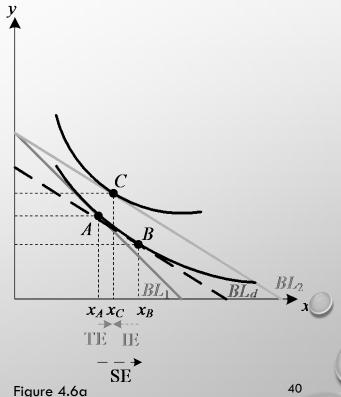
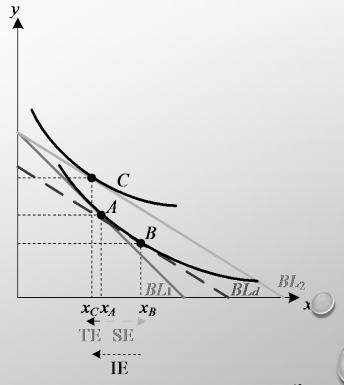


Figure 4.5

- ullet IE and SE when good x is regarded as inferior.
 - The income effect (IE) is negative, but it only partially offsets the substitution effect (SE), producing a positive total effect (TE).



- IE and SE with a Giffen good.
 - The income effect (IE) is negative, but large enough to offset the substitution effect (SE) and produce a negative total effect (TE).



Intermediate Microeconomic Theory

Figure 4.6b

41

• Summary:

Table 4.2

Price Decrease				Price Increase	Price Increase		
Type of good	SE	IE	TE	Type of Good	SE	IE	TE
Normal	+	+	+	Normal	_	_	_
Inferior	+	_	_	Inferior	_	+	+
Giffen	+	_	_	Giffen	_	+	+

- EXAMPLE 4.8: FINDING IE AND SE WITH A COBB-DOUGLAS UTILITY FUNCTION.
 - CONSIDER u(x,y)=xy, I=\$100, and $p_y=\$1$. And assume $p_x=\$3$ decreases to $p_x'=\$2$.
 - FINDING INITIAL BUNDLE A (AT $p_x = \$3$):
 - THE TANGENCY CONDITION IS

$$\frac{MU_x}{MU_y} = \frac{p_x}{p_y} \Longrightarrow \frac{y}{x} = \frac{3}{1} \implies y = 3x.$$

• INSERTING THIS RESULT INTO THE BUDGET LINE, 3x + y = 100,

$$3x + 3x = 100 \Rightarrow x = \frac{100}{6}$$
 UNITS,
 $y = 3\frac{100}{6} = 50$ UNITS.

• AT $p_x = \$3$, OPTIMAL BUNDLE IS $A = \left(\frac{100}{6}, 50\right)$.

- EXAMPLE 4.8 (CONTINUED):
 - FINDING FINAL BUNDLE C (AT $p_x' = \$2$):
 - THE TANGENCY CONDITION IS

$$\frac{MU_x}{MU_y} = \frac{p_x}{p_y} \Longrightarrow \frac{y}{x} = \frac{2}{1} \implies y = 2x.$$

• INSERTING THIS RESULT INTO THE NEW BUDGET LINE, 2x + y = 100,

$$2x + 2x = 100 \Rightarrow x = \frac{100}{4} = 25$$
 UNITS,
 $y = 2 \times 25 = 50$ UNITS.

- AT $p'_x = \$2$, OPTIMAL BUNDLE IS C = (25,50).
- THE TOTAL EFFECT (TE) OF THE DECREASE IN $p_{\scriptscriptstyle \mathcal{X}}$ IS AN INCREASE OF

$$TE = x_C - x_A = 25 - \frac{100}{6} \cong 8.3 \text{ UNITS.}$$

- EXAMPLE 4.8 (CONTINUED):
 - FINDING DECOMPOSITION BUNDLE B:
 - BUNDLE B SATISFIES 2 CONDITIONS:
 - 1. AT B THE CONSUMER REACHES THE SAME UTILITY LEVEL AS AT A

$$u\left(\frac{100}{6}, 50\right) = xy = \frac{100}{6} \times 50 \cong 833.3.$$

2. THE DECOMPOSITION BUDGET LINE BL_d , HAS THE SAME SLOPE AS BL_2 , AND IS TANGENT TO THE INDIFFERENCE CURVE. THAT IS,

$$\frac{MU_x}{MU_y} = \frac{p_x'}{p_y},$$

$$\frac{y}{x} = \frac{2}{1} \implies y = 2x.$$

- EXAMPLE 4.8 (CONTINUED):
 - FINDING DECOMPOSITION BUNDLE B (CONT.):
 - IN SUMMARY, PREVIOUS CONDITIONS STATE THAT,

$$xy = 833.3 \text{ AND } y = 2x.$$

INSERTING ONE EQUATION INTO THE OTHER,

$$x(2x) = 833.3,$$

$$x^2 = 416.6,$$

$$\sqrt{x^2} = \sqrt{416.6},$$

$$y = 2 \times 20.4 = 40.8$$
 UNITS.

• THEN, BUNDLE B IS B = (20.4,40.8).

- EXAMPLE 4.8 (CONTINUED):
 - THE SUBSTITUTION EFFECT OF THE DECREASE IN p_x IS

$$SE = x_A - x_B = 20.4 - \frac{100}{6} \cong 3.74 \text{ UNITS.}$$

THE CONSUMER INCREASES PURCHASES OF GOOD x BY 3.74 UNITS ONLY DUE TO THE LOWER PRICE OF THIS GOOD, BUT STILL REACHES THE SAME UTILITY LEVEL AS BEFORE THE PRICE CHANGE.

THE INCOME EFFECT OF THIS PRICE DECREASE IS

$$IE = x_C - x_B = 25 - 20.4 = 4.6 \text{ UNITS}$$

FOR A GIVEN PRICE RATIO, THE CONSUMER INCREASES HER CONSUMPTION OF GOOD x BY 4.6 Units because a Cheaper Good x increases her purchasing power.

- EXAMPLE 4.9: FINDING IE AND SE WITH QUASILINEAR UTILITY.
 - CONSIDER $u(x,y)=2x^{1/2}+y$, I=\$100, and $p_y=\$1$. And assume $p_x=\$3$ decreases to $p_x'=\$2$ as in example 4.8.
 - FINDING INITIAL BUNDLE A (AT $p_x = \$3$):

• THE TANGENCY CONDITION
$$\frac{MU_x}{MU_y} = \frac{p_x}{p_y}$$
 BECOMES
$$\frac{\frac{1}{x^{\frac{1}{2}}}}{\frac{1}{x}} = \frac{3}{1} \Rightarrow \frac{1}{x^{\frac{1}{2}}} = \frac{3}{1},$$

$$\frac{1}{3} = x^{\frac{1}{2}} \Rightarrow \left(\frac{1}{3}\right)^2 = \left(x^{1/2}\right)^2,$$

$$x = \frac{1}{9} \cong 0.11 \text{ UNITS.}$$

- EXAMPLE 4.9 (CONTINUED):
 - FINDING INITIAL BUNDLE A (AT $p_x = \$3$) (CONT.):
 - INSERTING THIS RESULT INTO THE BUDGET LINE,

$$3x + y = 100$$
, $(3 \times 0.11) + y = 100$, $y = 100 - 0.33 \cong 99.67$ UNITS.

• AT $p_x = \$3$, OPTIMAL BUNDLE IS A = (0.11,99.67).

- EXAMPLE 4.9 (CONTINUED):
 - FINDING FINAL BUNDLE C (AT $p'_x = \$2$):
 - THE TANGENCY $\frac{MU_{\chi}}{MU_{y}} = \frac{p_{\chi}}{p_{y}}$ CONDITION YIELDS

$$\frac{\frac{1}{x^{\frac{1}{2}}}}{1} = \frac{2}{1} \implies \frac{1}{x^{\frac{1}{2}}} = 2$$

$$\frac{1}{2} = x^{1/2} \Longrightarrow \left(\frac{1}{2}\right)^2 = \left(x^{1/2}\right)^2,$$

$$x = \frac{1}{4} \cong 0.25 \text{ UNITS.}$$

- EXAMPLE 4.9 (CONTINUED):
 - FINDING FINAL BUNDLE C (AT $p'_x = \$2$) (CONT.):
 - INSERTING THIS RESULT INTO THE NEW BUDGET LINE,

$$2x + y = 100$$
,
 $(2 \times 0.25) + y = 100$
 $y = 100 - 0.5 = 95.5$ UNITS.

- AT $p'_x = \$2$, OPTIMAL BUNDLE IS C = (0.25,95.5).
- THE TOTAL EFFECT OF THE DECREASE IN p_{χ} IS AN INCREASE OF

$$TE = x_C - x_A = 0.25 - 0.11 = 0.14$$
 UNITS.

- EXAMPLE 4.9 (CONTINUED):
 - FINDING DECOMPOSITION BUNDLE B:
 - 1. At B the consumer reaches the same utility level as at A $u(0.11,99.67) = \left(2 \times 0.11^{1/2}\right) + 99.67 \cong 100.33.$
 - 2. THE DECOMPOSITION BUDGET LINE BL_d , HAS THE SAME SLOPE AS BL_2 , AND IS TANGENT TO THE INDIFFERENCE CURVE. THAT IS,

$$\frac{MU_x}{MU_y} = \frac{p_x'}{p_y},$$

$$\frac{1}{\frac{x^{1/2}}{1}} = \frac{2}{1} \Longrightarrow \frac{1}{\frac{1}{x^{\frac{1}{2}}}} = 2 \Longrightarrow \frac{1}{2} = x^{1/2},$$

$$\left(\frac{1}{2}\right)^2 = \left(x^{1/2}\right)^2 \Longrightarrow x = \frac{1}{4} \cong 0.25 \text{ UNITS.}$$

- EXAMPLE 4.9 (CONTINUED):
 - FINDING DECOMPOSITION BUNDLE B (CONT.):
 - IN SUMMARY, PREVIOUS CONDITIONS STATE THAT,

$$2x^{1/2} + y = 100.33$$
 AND $x = 0.25$.

INSERTING ONE EQUATION INTO THE OTHER,

$$(2 \times 0.25^{1/2}) + y = 100.33,$$

 $(2 \times 0.5) + y = 100.33,$

$$y = 100.33 - 1 = 99.33$$
 UNITS.

• THEN, BUNDLE B IS B = (0.25,99.33).

- EXAMPLE 4.9 (CONTINUED):
 - THE SUBSTITUTION EFFECT OF THE DECREASE IN p_x IS $SE = x_A x_B = 0.25 0.11 = 0.14$ UNITS.
 - THE INCOME EFFECT OF THIS PRICE DECREASE IS $IE = x_C x_B = 0.25 0.25 = 0 \text{ UNITS.}$
 - SE = TE:
 - THE CONSUMER, AFTER EXPERIENCING A CHEAPER GOOD x, USES HER INCREASED PURCHASING POWER TO BUY MORE UNITS OF GOOD y ALONE, RATHER THAN INCREASING PURCHASES OF GOOD x.

- WE APPLY THE ANALYSIS OF IE AND SE TO THE CASE OF HOURS OF LEISURE AN INDIVIDUAL ENJOYS, L.
- BECAUSE THE DAY HAS ONLY 24, THE ANALYSIS OF LEISURE CHOICES ALLOWS US TO EXAMINE IT COUNTERPART, WORKING HOURS, H.

$$L + H = 24$$
,

$$H = 24 - L$$
.

- FIGURE 4.7A REPRESENTS AN INDIVIDUAL FACING A
- igcup Salary of w per working hour.
- Bl_1 originates at the horizontal intercept at L=24h/day (H=0).
- At this point, I=0. She cannot buy any unit of the composite good y, in the vertical axis.
- If H=1, I increases to W. If she works all day, her income is 24w. She does not enjoy leisure but can purchase the largest amount of γ .

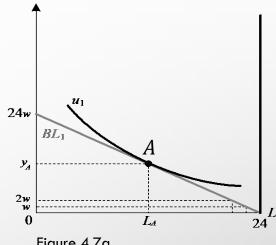


Figure 4.7a

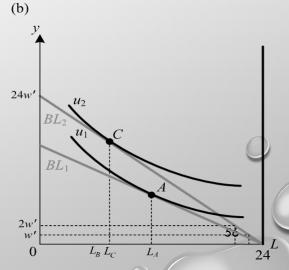
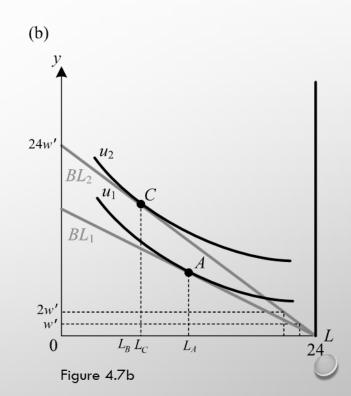


Figure 4.7b

FIGURE 4.7A REPRESENTS AN INDIVIDUAL FACING A SALARY OF w PER WORKING HOUR.

 The indifference curve moves northeast. Her utility increases as she enjoys more L and y.

• At hourly wage of w, she chooses the optimal bundle A, in which BL_1 is tangent to her indifference curve u_1 . She enjoys L_A hours of leisure and y_A goods.



- FIGURE 4.7B DEPICTS AN INCREASE IN THE WORKER'S HOURLY SALARY FROM w TO w'.
 - The new budget line BL_2 becomes steeper than BL_1 .
 - Working 24h her income becomes 24w', which lies above BL_1 because 24w' > w.
 - With this salary, she chooses a new optimal bundle \mathcal{C} , where she enjoys $\mathcal{L}_{\mathcal{C}}.$
 - The total effect from the salary increase is $TE = L_C L_A$.

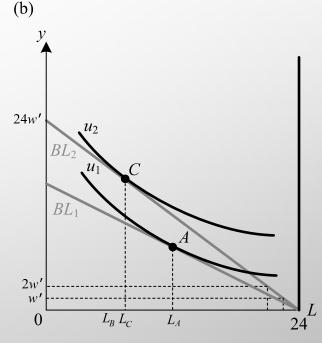
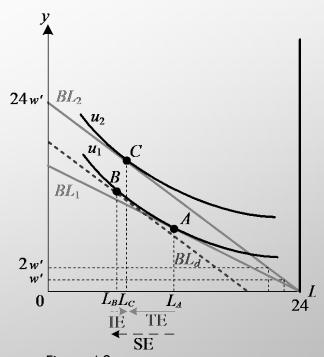


Figure 4.7b

 FIGURE 4.8 DECOMPOSES TOTAL EFFECT INTO SUBSTITUTION AND INCOME EFFECTS.

• To examine SE and IE we find the decomposition budget line BL_D , which is tangent to initial indifference curve, u_1 , at bundle B, where she enjoys L_B hours of leisure.



- FIGURE 4.8 DECOMPOSES TOTAL EFFECT INTO SUBSTITUTION AND INCOME EFFECTS.
 - The substitution effect is

$$SE = L_A - L_B$$
.

A higher salary/h induces her to work more hours.

• The income effect is

$$IE = L_C - L_B$$
.

As she becomes richer, she can afford to work less and enjoy more leisure.

