Intermediate Microeconomic Theory

Simultaneous-Move Games

OUTLINE

- WHAT IS A GAME?
- STRATEGIC DOMINANCE
- NASH EQUILIBRIUM
- COMMON GAMES
- MIXED-STRATEGY NASH EQUILIBRIUM

WE REFER TO A "GAME" EVERY TIME WE CONSIDER A SCENARIO IN WHICH THE ACTION OF ONE AGENT (EITHER INDIVIDUAL, FIRM, OR GOVERNMENT) AFFECT OTHER AGENTS' WELL-BEING.

EXAMPLES:

- WHEN A FIRM INCREASES ITS OUTPUT, IT MAY LOWER MARKET PRICES,
 WHICH DECREASES PROFITS OF OTHER FIRMS IN THE INDUSTRY.
- WHEN A COUNTRY SETS A HIGHER TARIFF ON IMPORTS, IT MAY DECREASE THE VOLUME OF IMPORTS, AFFECTING THE WELFARE OF ANOTHER COUNTRY'S WELFARE.
- MOST DAY-TO-DAY LIFE CONTEXTS CAN BE MODELED AS GAMES.

• ELEMENTS OF GAME:

- PLAYERS. THE SET OF INDIVIDUALS, FIRMS, GOVERNMENT OR COUNTRIES, THAT INTERACT WITH ONE ANOTHER. WE CONSIDER GAMES WITH 2 OR MORE PLAYERS.
- STRATEGY. A COMPLETE PLAN DESCRIBING WHICH ACTIONS A PLAYER CHOOSES IN EACH POSSIBLE SITUATION (CONTINGENCY).
 - A STRATEGY IS LIKE AN INSTRUCTION MANUAL, WHICH DESCRIBES EACH CONTINGENCY IN THE GAME, AND THE ACTION TO CHOOSE.
- PAYOFFS. WHAT EVERY PLAYER OBTAINS UNDER EACH POSSIBLE STRATEGY PATH.
 - IF PLAYER 1 CHOOSES A AND PLAYERS 2 AND 3 CHOOSE B, THE VECTOR OF PAYOFFS IS (\$5,\$8,\$7).

- WE ASSUME ALL PLAYERS ARE RATIONAL. IT REQUIRES:
 - EVERY PLAYER KNOWS THE RULES OF THE GAME: PLAYERS,
 STRATEGY IN EACH CONTINGENCY, AND RESULTING PAYOFFS IN EACH CASE.
 - EVERY PLAYER KNOWS THAT EVERY PLAYER KNOWS THE RULES OF THE GAME, AND EVERY PLAYER KNOWS THAT EVERY PLAYER KNOWS ... AD INFINITUM.
 - THIS ASSUMPTION IS ALSO KNOWN AS "COMMON KNOWLEDGE OF RATIONALITY."
 - IT GUARANTEES THAT EVERY PLAYER CAN PUT HERSELF IN THE SHOES OF HER OPPONENT AT ANY STAGE OF THE GAME TO ANTICIPATE HER MOVES.

• TWO GRAPHICAL APPROACHES TO REPRESENT GAMES:

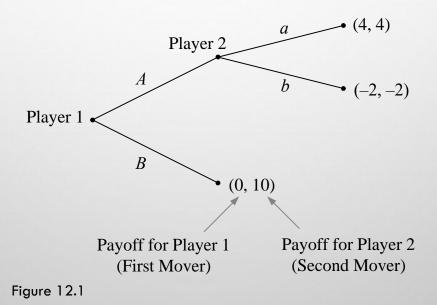
- MATRICES:
 - PLAYER 1 IS LOCATED ON THE LEFT SIDE, AS SHE CHOOSES ROWS (REFERRED AS THE "ROW PLAYER").
 - PLAYER 2 IS PLACED ON THE TOP OF THE MATRIX BECAUSE SHE SELECTS COLUMNS (CALLED THE "COLUMN PLAYER").
 - MATRIX ARE OFTEN USED TO REPRESENT GAMES IN WHICH PLAYERS
 CHOOSE THEIR ACTIONS SIMULTANEOUSLY.

	Player 2		
		Left	Right
Player 1	Up	-4, -4	0, -7
	Down	7,0	-1, -1

Matrix 12.1

TWO GRAPHICAL APPROACHES TO REPRESENT GAMES:

- TREES:
 - PLAYERS ACT SEQUENTIALLY, WITH PLAYER 1 (THE LEADER) ACTING FIRST, AND PLAYER 2 (THE FOLLOWER) RESPONDING TO PLAYER 1'S ACTION.



- HOW DO WE PREDICT THE WAY IN WHICH A GAME WILL BE PLAYED?
 - HOW CAN WE FORECAST PLAYERS' BEHAVIOR IN A COMPETITIVE CONTEXT?
 - WE SEEK TO IDENTIFY SCENARIOS IN WHICH NO PLAYER HAS INCENTIVE TO ALTER HER STRATEGY CHOICE, GIVEN THE STRATEGY OF HER OPPONENTS.
 - THESE SCENARIOS ARE CALLED "EQUILIBRIA" BECAUSE PLAYERS HAVE NO INCENTIVES TO DEVIATE FROM THEIR STRATEGY CHOICES.

- THE FIRST SOLUTION CONCEPT: EQUILIBRIUM DOMINANCE.
 - STRICT DOMINANCE. PLAYER i FINDS THAT STRATEGY s_i STRICTLY DOMINATES ANOTHER STRATEGY s_i' IF CHOOSING s_i PROVIDES HER WITH A STRICTLY HIGHER PAYOFF THAN SELECTING s_i' , REGARDLESS OF HER RIVALS' STRATEGIES.
 - s_i IS A "STRICTLY DOMINANT STRATEGY" WHEN STRICTLY DOMINATES s_i' .
 - A STRICTLY DOMINANT STRATEGY PROVIDES PLAYER i WITH AN UNAMBIGUOUSLY HIGHER PAYOFF THAN ANY OTHER AVAILABLE STRATEGY.
 - s_i' IS "STRICTLY DOMINATED" BY s_i .
 - A STRICTLY DOMINATED STRATEGY GIVES PLAYER i A STRICTLY LOWER PAYOFF.

- TOOL 12.1. HOW TO FIND A STRICTLY DOMINATED STRATEGY:
 - 1. FOCUS ON THE ROW PLAYER BY FIXING ATTENTION ON ONE STRATEGY OF THE COLUMN PLAYER.
 - a) COVER WITH YOUR HAND ALL COLUMNS NOT BEING CONSIDERED.
 - b) FIND THE HIGHEST PAYOFF FOR THE ROW PLAYER BY COMPARING, ACROSS ROWS, THE FIRST COMPONENT OF EVERY PAIR.
 - c) UNDERLINE THIS PAYOFF.
 - 2. REPEAT STEP 1, BUT FIX YOU ATTENTION ON A DIFFERENT COLUMN.
 - 3. IF, AFTER REPEATING STEP 1 ENOUGH TIMES, THE HIGHEST PAYOFF FOR THE ROW PLAYER ALWAYS OCCURS AT THE SAME ROW, THIS ROW BECOMES HER DOMINANT STRATEGY.
 - 4. FOR THE COLUMN PLAYER, THE METHOD IS ANALOGOUS, BUT NOW FIX YOUR ATTENTION ON ONE STRATEGY OF THE ROW PLAYER.

- EXAMPLE 12.1: FINDING STRICTLY DOMINANT STRATEGIES.
 - CONSIDER MATRIX 12.2A WITH 2 FIRMS SIMULTANEOUSLY AND INDEPENDENTLY CHOOSING A TECHNOLOGY:

	Firm 2		
		Tech a	Tech b
Firm 1	Tech A	5,5	2,0
	Tech B	3,2	1,1

Matrix 12.2a

- TECHNOLOGY A IS STRICTLY DOMINANT FOR FIRM 1 BECAUSE IT YIELDS A HIGHER PAYOFF THAN B, BOTH
 - WHEN FIRM 2 CHOOSES α BECAUSE 5 > 3; AND
 - WHEN IT SELECTS b GIVEN THAT 2 > 1.

• EXAMPLE 12.1 (CONTINUED):

	Firm 2		
		Tech a	Tech b
Firm 1	$Tech\ A$	5,5	2,0
	Tech B	3,2	1,1

Matrix 12.2a

- TECHNOLOGY a IS STRICTLY DOMINANT FOR FIRM 2 BECAUSE IT PROVIDES A HIGHER PAYOFF THAN b, BOTH
 - WHEN FIRM 1 CHOOSES A BECAUSE 5 > 0; AND
 - WHEN IT SELECTS B GIVEN THAT 2 > 1.
- THE EQUILIBRIUM OF THIS GAME IS (A, a).

- THE DEFINITION OF STRICT DOMINANCE DOES NOT ALLOW FOR TIES IN THE PAYOFFS THAT FIRM i EARNS.
- WEAK DOMINANCE. PLAYER i FINDS THAT STRATEGY s_i WEAKLY DOMINATES ANOTHER STRATEGY s_i' IF CHOOSING s_i PROVIDES HER WITH A STRICTLY HIGHER PAYOFF THAN SELECTING s_i' FOR AT LEAST ONE OF HER RIVALS' STRATEGIES, BUT PROVIDES THE SAME PAYOFF AS s_i' FOR THE REMAINING STRATEGIES OF HER RIVALS.
 - A WEAKLY DOMINANT STRATEGY YIELDS THE SAME PAYOFF AS OTHER AVAILABLE STRATEGIES, BUT A STRICTLY HIGHER PAYOFF AGAINST AT LEAST ONE STRATEGY OF THE PLAYER'S RIVALS.

• CONSIDER MATRIX 12.2B:

	Firm 2		
		Tech a	Tech b
Firm 1	$Tech\ A$	5,5	2,0
	Tech ${\it B}$	3,1	2,1

Matrix 12.2b

- FIRM 1 FINDS THAT TECHNOLOGY A WEAKLY DOMINATES B BECAUSE
 - A YIELDS A HIGHER PAYOFF THAN B AGAINST a, 5 > 3; BUT
 - PROVIDES FIRM 1 WITH EXACTLY THE SAME PAYOFF AS B, \$2, AGAINST b.
- FIRM 2 FINDS THAT TECHNOLOGY a WEAKLY DOMINATES b BECAUSE
 - a YIELDS A HIGHER PAYOFF THAN b AGAINST A, 5 > 0; BUT
 - GENERATES THE SAME PAYOFF AS b, \$1, WHEN FIRM 1 CHOOSES B.

- IN MATRICES WITH MORE THAN 2 ROWS AND/OR COLUMNS, FINDING STRICTLY DOMINATED STRATEGIES IS HELPFUL.
- WE CAN DELETE THOSE STRATEGIES (ROWS OR COLUMNS)
 BECAUSE THE PLAYER WOULD NOT CHOOSE THEM.
- ONCE WE HAVE DELETED THE DOMINATED STRATEGIES FOR ONE PLAYER, WE CAN MOVE TO ANOTHER PLAYER AND DO THE SAME, AND SUBSEQUENTLY MOVE ON TO ANOTHER PLAYER.

- THIS PROCESS IS KNOWN AS DELETION OF STRICTLY DOMINATED STRATEGIES (IDSDS).
- ONCE WE CANNOT FIND ANY MORE STRICTLY DOMINATED STRATEGIES FOR EITHER PLAYER, WE ARE LEFT WITH THE EQUILIBRIUM PREDICTION.
- IDSDS CAN YIELD TO MULTIPLE EQUILIBRIA.

- EXAMPLE 12.2: WHEN IDSDS DOES NOT PROVIDE A UNIQUE EQUILIBRIUM.
 - CONSIDER MATRIX 12.3 REPRESENTING THE PRICE DECISION OF TWO FIRMS:

Firm 2

		High	Medium	Low
	High	2,3	1,4	3,2
Firm 1	Medium	5,1	2,3	1,2
	Low	3,7	4,6	5,4

Matrix 12.3

• FOR FIRM 1, HIGH IS STRICTLY DOMINATED BY LOW BECAUSE HIGH YIELDS A LOWER PAYOFF, REGARDLESS OF THE PRICE CHOSEN BY FIRM 2. WE CAN DELETE HIGH FROM FIRM 1'S ROWS, RESULTING IN THE REDUCED MATRIX 12.4.

• EXAMPLE 12.2 (CONTINUED):

Firm 2				
		High	Medium	Low
E: 1	Medium	5,1	2,3	1,2
Firm 1	Low	3,7	4,6	5,4

Matrix 12.4

- FOR FIRM 2, LOW IS STRICTLY DOMINATED BY MEDIUM BECAUSE LOW YIELDS A STRICTLY THAN MEDIUM, REGARDLESS OF THE ROW THAT FIRM 1 SELECTS.
- AFTER DELETING THE LOW COLUMN FROM FIRM 2'S STRATEGIES, WE ARE LEFT WITH A FURTHER REDUCED MATRIX (MATRIX 12.5).
- WE CAN NOW MOVE AGAIN TO ANALYZE FIRM 1.

• EXAMPLE 12.2 (CONTINUED):

	Firm 2		
		High	Medium
F' 1	Medium	5,1	2,3
Firm 1	Low	3,7	4,6
Matrix 12.5			

- WE CANNOT FIND ANY MORE STRICTLY DOMINATED STRATEGIES FOR FIRM 1 BECAUSE THERE IS NO STRATEGY (NO ROW) YIELDING A LOWER PAYOFF, REGARDLESS OF THE COLUMN PLAYER 2 PLAYS.
 - FIRM 1 PREFERS MEDIUM TO LOW IF FIRM 2 CHOOSES HIGH BECAUSE 5 > 3; BUT
 - IT PREFERS LOW IF FIRM 2 CHOOSES MEDIUM GIVEN THAT 4 > 2.
- A SIMILAR ARGUMENT APPLIES TO FIRM 2.

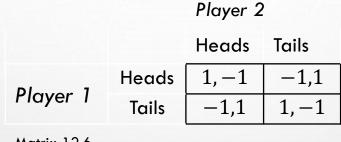
• EXAMPLE 12.2 (CONTINUED):

	Firm 2		
		High	Medium
Firm 1	Medium	5,1	2,3
	Low	3,7	4,6

Matrix 12.5

- THE REMAINING FOUR CELLS IN THIS MATRIX CONSTITUTE THE MOST PRECISE EQUILIBRIUM PREDICTION AFTER APPLYING IDSDS.
- THIS IS ONE OF THE DISADVANTAGES OF IDSDS AS SOLUTION CONCEPT.
- IN SOME GAMES IDSDS "DOES NOT HAVE A BITE" BECAUSE IT DOES NOT HELP TO REDUCE THE SET OF STRATEGIES THAT A RATIONAL PLAYER WOULD CHOOSE IN EQUILIBRIUM.

- EXAMPLE 12.3: WHEN IDSDS DOES NOT HAVE A BITE.
 - MATRIX 12.6 REPRESENTS THE MATCHING PENNIES GAME.



- Matrix 12.6
- PLAYER 1 DOES NOT FIND ANY STRATEGY STRICTLY DOMINATED:
 - SHE PREFERS HEADS WHEN PLAYER 2 CHOOSES HEADS, BUT TAILS WHEN PLAYER 2 CHOOSES TAILS.
- A SIMILAR ARGUMENT APPLIES TO PLAYER 2.
- NO PLAYER HAS STRICTLY DOMINATED STRATEGIES. IDSDS HAS "NO BITE."

- APPLYING IDSDS:
 - HELPS US DELETE ALL BUT ONE CELL FROM THE MATRIX IN SOME GAMES.
 - FOR OTHER GAMES, IDSDS DELETES ONLY A FEW STRATEGIES, PROVIDING A RELATIVELY IMPRECISE EQUILIBRIUM PREDICTION.
 - AND FOR OTHER GAMES, IT DOES NOT HAVE A BITE.

- WE NEXT EXAMINE A DIFFERENT SOLUTION CONCEPT
 WITH "MORE BITE", OFFERING EITHER THE SAME OR MORE
 PRECISE EQUILIBRIUM PREDICTIONS.
- THE "NASH EQUILIBRIUM", NAMED AFTER NASH (1950)
 BUILDS ON THE NOTION THAT EVERY PLAYER FINDS HER
 "BEST RESPONSE" TO EACH OF HER RIVALS' STRATEGIES.

• BEST RESPONSE. PLAYER i REGARDS STRATEGY s_i AS A BEST RESPONSE TO HER RIVAL'S STRATEGY s_j IF s_i YIELDS A WEAKLY HIGHER PAYOFF THAN ANY OTHER AVAILABLE STRATEGY s_i' AGAINST s_i .

- TOOL 12.2. HOW TO FIND BEST RESPONSES IN MATRIX GAMES:
 - FOCUS ON THE ROW PLAYER BY FIXING ATTENTION ON ONE STRATEGY OF THE COLUMN PLAYER.
 - a) COVER WITH YOUR HAND ALL COLUMNS NOT BEING CONSIDERED.
 - b) FIND THE HIGHEST PAYOFF FOR THE ROW PLAYER BY COMPARING THE FIRST COMPONENT OF EVERY PAIR.
 - c) UNDERLINE THIS PAYOFF. THIS IS THE ROW PLAYER'S BEST RESPONSE TO THE COLUMN YOU CONSIDERED FROM THE COLUMN PLAYER.
 - REPEAT STEP 1, BUT FIX YOUR ATTENTION ON A DIFFERENT COLUMN.
 - FOR THE COLUMN PLAYER, THE METHOD IS ANALOGOUS, BUT NOW DIRECT YOUR ATTENTION ON ONE STRATEGY OF THE ROW PLAYER.

- NASH EQUILIBRIUM (NE). A STRATEGY PROFILE (s_i^*, s_j^*) IS A NE IF EVERY PLAYER CHOOSES A BEST RESPONSE TO HER RIVALS' STRATEGIES.
 - A STRATEGY PROFILE IS NE IF IT IS A MUTUAL BEST RESPONSE: THE STRATEGY THAT PLAYER i CHOOSES IS A BEST RESPONSE TO THAT SELECTED BY PLAYER j, AND VICE VERSA.
 - AS A RESULT, NO PLAYER HAS INCENTIVES TO DEVIATE
 BECAUSE DOING SO WOULD EITHER LOWER HER PAYOFF,
 OR KEEP IT UNCHANGED.

- TOOL 12.3. HOW TO FIND NASH EQUILIBRIA:
 - 1. FIND THE BEST RESPONSES TO ALL PLAYERS.
 - IDENTIFY WHICH CELL OR CELLS IN THE MATRIX HAS ALL PAYOFFS UNDERLINED, MEANING THAT ALL PLAYERS HAVE A BEST RESPONSE PAYOFF. THESE CELLS ARE THE NES OF THE GAME.

- EXAMPLE 12.4: FINDING BEST RESPONSES AND NES.
 - CONSIDER MATRIX 12.7 (THE SAME AS IN EXAMPLE 12.1):

		Firm 2		
			Tech a	Tech b
	Firm 1	Tech A	<u>5</u> , 5	<u>2</u> , 0
1 11 111 1	Tech B	3,2	1,1	

Matrix 12.7

- FIRM 1'S BEST RESPONSES.
 - WHEN FIRM 2 CHOOSES a, FIRM 1'S BEST RESPONSE IS A BECAUSE IT YIELDS A HIGHER PAYOFF THAN B, 5 > 3.
 - WHEN FIRM 2 CHOOSES b, FIRM 1'S BEST RESPONSE IS A, GIVEN THAT 2 > 1.
 - THEN, FIRM 1'S BEST RESPONSES ARE $BR_1(a) = A$ WHEN FIRM 2 CHOOSES a AND $BR_1(b) = A$, WHEN FIRM 2 SELECTS B.

• EXAMPLE 12.4 (CONTINUED):

	Firm 2			
		Tech a	Tech b	
Firm 1	$Tech\ A$	<u>5, 5</u>	<u>2</u> , 0	
	$Tech\; B$	3, <u>2</u>	1,1	
Matrix 12.7				

- FIRM 2'S BEST RESPONSES.
 - WHEN FIRM 1 CHOOSES A, $BR_2(A) = a$ BECAUSE 5 > 0.
 - WHEN FIRM 1 CHOOSES B, $BR_2(B) = a$ BECAUSE 2 > 1.
- FASTER TOOL: UNDERLING BR PAYOFFS.
 - THE CELLS WHERE ALL THE PAYOFFS ARE UNDERLINED MUST CONSTITUTE A NE OF THE GAME BECAUSE ALL PLAYERS ARE PLAYING MUTUAL BEST RESPONSES.
- THE NE IS (A, a), THE SAME PREDICTION AS IDSDS.

- EXAMPLE 12.4 (CONTINUED):
 - NOW CONSIDER MATRIX 12.8, WHICH REPRODUCES MATRIX 12.1B:

- FIRM 1'S BEST RESPONSES ARE $BR_1(a) = A$ AND $BR_1(b) = \{A, B\}$.
- FIRM 2'S BEST RESPONSES ARE $BR_2(A) = a$ AND $BR_2(B) = \{a, b\}$.
- STRATEGY PROFILES (A,a) AND (B,b) CONSTITUTE THE TWO NES OF THE GAME.
- THE NE SOLUTION CONCEPT PROVIDES A MORE PRECISE PREDICTION THAN THE IDSDS (WHICH LEFT WITH FOUR STRATEGIES PROFILES).

COMMON GAMES

COMMON GAMES

- WE APPLY THE NE SOLUTION CONCEPT TO 4 COMMON GAMES IN ECONOMICS AND OTHER SOCIAL SCIENCES:
 - THE PRISONER'S DILEMMA GAME.
 - THE BATTLE OF THE SEXES GAME.
 - THE COORDINATION GAME.
 - THE ANTICOORDINATION GAME.

Intermediate Microeconomic Theory

PRISONER'S DILEMMA

- EXAMPLE 12.5: PRISONER'S DILEMMA GAME.
 - CONSIDER 2 PEOPLE ARE ARRESTED BY THE POLICE, AND ARE PLACED IN DIFFERENT CELLS. THEY CANNOT COMMUNICATE WITH EACH OTHER.
 - THE POLICE HAVE ONLY MINOR EVIDENCE AGAINST THEM BUT SUSPECTS THAT THE TWO COMMITTED A SPECIFIC CRIME.
 - THE POLICE SEPARATELY OFFERS TO EACH OF THEM THE DEAL REPRESENTED IN THE FOLLOWING MATRIX (WHERE NEGATIVE VALUES INDICATE DISUTILITY IN YEARS OF JAIL):

	Player 2		
		Confess	Not confess
Player 1	Confess	-5, -5	0, -10
	Not confess	-10,0	-1, -1

Matrix 12.9a

PRISONER'S DILEMMA

• EXAMPLE 12.5 (CONTINUED):

Confess	Not confess
Player 1 Confess $-5, -5$	<u>0</u> , −10
Not confess $-10, \underline{0}$	-1,-1

Matrix 12.9a

- PLAYER 1'S BEST RESPONSES ARE:
 - $BR_1(C) = C$ BECAUSE -5 > -10 AND $BR_1(NC) = C$ BECAUSE 0 > -1.
- PLAYER 2'S BEST RESPONSES ARE:
 - $BR_2(\mathcal{C}) = \mathcal{C}$ BECAUSE -5 > -10 AND $BR_2(N\mathcal{C}) = \mathcal{C}$ BECAUSE 0 > -1.
- (Confess, Confess) IS THE UNIQUE NE OF THE GAME, BOTH PLAYERS CHOOSE MUTUAL BEST RESPONSES.

PRISONER'S DILEMMA

- IN NE IN THE PRISONER'S DILEMMA GAME, EVERY PLAYER, SEEKING TO MAXIMIZE HER OWN PAYOFF, CONFESSES, WHICH ENTAILS 5 YEARS OF JAIL FOR BOTH.
- IF INSTEAD, PLAYERS COULD COORDINATE THEIR ACTIONS AND NO CONFESS, THEY WOULD ONLY SERVE 1 YEAR IN JAIL.
- THIS GAME ILLUSTRATES STRATEGIC SCENARIOS IN WHICH THERE IS TENSION BETWEEN INDIVIDUAL INCENTIVES OF EACH PLAYER AND THE COLLECTIVE INTEREST OF THE GROUP.

 EXAMPLES:
 - PRICE WARS BETWEEN FIRMS.
 - TARIFF WARS BETWEEN COUNTRIES.
 - USE OF NEGATIVE CAMPAIGNING IN POLITICS.

BATTLE OF THE SEXES

- EXAMPLE 12.6: BATTLE OF THE SEXES GAME.
 - ANA AND FELIX ARE INCOMMUNICADO IN SEPARATE AREAS OF THE CITY.
 - IN THE MORNING, THEY TALKED ABOUT WHERE TO GO AFTER WORK, THE FOOTBALL GAME OR THE OPERA, BUT THEY NEVER AGREED.
 - EACH OF THEM MUST SIMULTANEOUSLY AND INDEPENDENTLY CHOOSE WHERE TO GO.
 - ANA AND FELIX'S PAYOFFS ARE SYMMETRIC. EACH OF THEM PREFERS TO GO TO THE EVENT THE OTHER GOES.

	Ana		
		Football	Opera
Felix	Football	5,4	3,3
I CIIX	Opera	2,2	4,5

Matrix 12.10a

BATTLE OF THE SEXES

EXAMPLE 12.6 (CONTINUED):

		Ana	
		Football	Opera
Felix	Football	<u>5, 4</u>	3,3
Tellx	Opera	2,2	<u>4, 5</u>

Matrix 12.10b

- FELIX'S BEST RESPONSES ARE:
 - $BR_{Felix}(F) = F$ BECAUSE 5 > 2 AND $BR_{Felix}(O) = 0$ BECAUSE 4 > 3.
- ANA'S BEST RESPONSES ARE:
 - $BR_{Ana}(F) = F$ BECAUSE 4 > 3 AND $BR_{Ana}(0) = 0$ BECAUSE 5 > 2.
- THE TWO NES IN THIS GAME ARE (Football, Football) AND (Opera, Opera).

- EXAMPLE 12.7: COORDINATION GAME.
 - CONSIDER THE GAME IN MATRIX 12.11A ILLUSTRATING A "BANK RUN" BETWEEN DEPOSITORS 1 AND 2, WITH PAYOFFS IN THOUSANDS OF \$.
 - NEWS SUGGEST THAT THE BANK WHERE DEPOSITORS 1 AND 2 HAVE THEIR SAVINGS ACCOUNTS COULD BE IN TROUBLE.
 - EACH DEPOSITOR MUST DECIDE SIMULTANEOUSLY AND INDEPENDENTLY WHETHER TO WITHDRAW ALL THE MONEY IN HER ACCOUNT OR WAIT.

Depositor 2

		Withdraw	Not withdraw
Depositor 1	Withdraw	50,50	100,0
	Not withdraw	0,100	150,150

Matrix 12.11a

• EXAMPLE 12.7 (CONTINUED):

		Depositor 2	
		Withdraw	Not withdraw
Depositor 1	Withdraw	<u>50, 50</u>	100,0
Depositor 1	Not withdraw	0,100	<u>150, 150</u>

Matrix 12.11b

- DEPOSITOR 1'S BEST RESPONSES ARE:
 - $BR_1(W) = W$ BECAUSE 50 > 0 AND $BR_1(NW) = NW$ BECAUSE 150 > 100.
- DEPOSITOR 2'S BEST RESPONSES ARE:
 - $BR_2(W) = W$ BECAUSE 50 > 0 AND $BR_2(NW) = NW$ BECAUSE 150 > 100.
- THE TWO NES IN THIS GAME ARE (Withdraw, Withdraw) AND (Not withdraw, Not witdraw).

- EXAMPLE 12.8: ANTICOORDINATION GAME.
 - MATRIX 12.12A PRESENTS A GAME WITH THE OPPOSITE STRATEGIC INCENTIVES AS THE THE COORDINATION GAME IN EXAMPLE 12.7.
 - THE MATRIX ILLUSTRATES THE GAME OF THE CHICKEN, AS SEEN IN MOVIES LIKE REBEL WITHOUT A CAUSE AND FOOTLOOSE.
 - TWO TEENAGERS IN CARS DRIVE TOWARD EACH OTHER (OR TOWARD A CLIFF).
 - IF THE SWERVE THEY ARE REGARDED AS "CHICKEN."

	Player 2			
		Swerve	Stay	
Dlawar 1	Swerve	-1, -1	-10,10	
Player 1	Stay	10, -10	-20, -20	

Matrix 12.12a

• EXAMPLE 12.8 (CONTINUED):

	Player 2				
		Swerve	Stay		
Dlawar 1	Swerve	-1, -1	-10,10		
Player 1	Stay	10, -10	-20, -20		

Matrix 12.12b

- PLAYER 1'S BEST RESPONSES ARE:
 - $BR_1(Swerve) = Stay$ BECAUSE 10 > -1 AND $BR_1(Stay) = Swerve$ BECAUSE -10 > -20.
- PLAYER 2'S BEST RESPONSES ARE:
 - $BR_2(Swerve) = Stay$ BECAUSE 10 > -1 AND $BR_2(Stay) = Swerve$ BECAUSE -10 > -20.
- THE TWO NES IN THIS GAME ARE (Swerve, Stay) AND (Stay, Swerve).

- ALL GAMES HAVE A NE? YES, UNDER RELATIVE GENERAL CONDITIONS.
- SOME GAMES MAY NOT HAVE A NE IF WE RESTRICT PLAYERS TO CHOOSE A SPECIFIC STRATEGY 100% OF THE TIME, RATHER THAN ALLOWING THEM TO RANDOMIZE ACROSS SOME OF THEIR AVAILABLE STRATEGIES.

- EXAMPLE 12.9: PENALTY KICKS IN SOCCER.
 - CONSIDER MATRIX 12.3A, REPRESENTING A PENALTY KICK IN SOCCER.

	Kicker		
		Aim Left	Aim Right
Goalie	Dive Left	0,0	-5,8
Godile	Dive Right	-5,8	0,0

Matrix 12.13a

- NO PURE STRATEGY NE.
 - GOALIE'S BEST RESPONSES.
 - $BR_G(L) = L$ BECAUSE 0 > -5, AND $BR_G(R) = R$ BECAUSE 0 > -5.
 - KICKER'S BEST RESPONSES:
 - $BR_K(L) = R$ BECAUSE 8 > 0, AND $BR_K(R) = L$ BECAUSE 8 > 0.

• EXAMPLE 12.9 (CONTINUED):

	Kicker		
		Aim Left	Aim Right
Goalie	Dive Left	<u>0</u> , 0	-5, <u>8</u>
Godile	Dive Right	-5, <u>8</u>	<u>0</u> , 0

Matrix 12.13b

- THERE IS NO CELL WHERE THE PAYOFFS FOR ALL PLAYERS HAVE BEEN UNDERLINED.
 - THERE IS NO "PURE-STRATEGY" NE WHEN RESTRICTING PLAYERS TO USE A SPECIFIC STRATEGY (EITHER LEFT OF RIGHT) WITH 100% PROBABILITY.
- IF INSTEAD, WE ALLOW PLAYERS TO RANDOMIZE, WE CAN FIND THE NE OF THE GAME.
 - BECAUSE PLAYERS MIX THEIR STRATEGIES, THIS NE IS KNOWN AS "MIXED-STRATEGY NE."

- EXAMPLE 12.9 (CONTINUED):
 - ALLOWING FOR RANDOMIZATION.
 - CONSIDER THE GOALIE DIVES LEFT, WITH PROBABILITY p, AND RIGHT, WITH PROBABILITY 1-p.
 - IF p=1, THE GOALIE WOULD BE DIVING LEFT WITH 100%.
 - IF p=0, SHE DIVES RIGHT WITH 100%.
 - IF 0 , SHE RANDOMIZES HER DECISION.
 - AND, LET THE KICKER ASSIGNS A PROBABILITY q TO AIMING LEFT, AND 1-q TO HER AIMING RIGHT.

			Kicker	
			Prob.q	$Prob\ 1-q$
			Aim Left	Aim Right
Goalie	Prob.p	Dive Left	0,0	-5,8
Godile	Prob.1-p	Dive Right	-5,8	0,0

Matrix 12.13c

• EXAMPLE 12.9 (CONTINUED):

			Kicker	
			Prob.q	$Prob\ 1-q$
			Aim Left	Aim Right
Goalie	Prob.p	Dive Left	0,0	-5,8
Godile	Prob. 1 - p	Dive Right	-5,8	0,0

Matrix 12.13c

- GOALIE (ROW PLAYER).
 - IF SHE DOES NOT SELECT A PARTICULAR ACTION WITH 100% PROBABILITY, IT MUST BE SHE IS INDIFFERENT BETWEEN DIVE LEFT AND DIVE RIGHT. THAT IS, HER EXPECTED UTILITY FROM BOTH OPTIONS MUST COINCIDE.
 - HER EXPECTED UTILITY FROM DIVING LEFT IS

$$EU_{Goalie}(Left) = \underbrace{q0}_{\text{kicker aims left}} + \underbrace{(1-q)(-5)}_{\text{kicker aims right}} = -5 + 5q.$$

• EXAMPLE 12.9 (CONTINUED):

Kicker $Prob.\ q$ $Prob.\ 1-q$ $Aim\ Left$ $Aim\ Right$ Goalie $Prob.\ 1-p$ $Prob.\ 1-p$ $Prob.\ 1-p$ $Prob.\ 1-q$ $Prob.\ 1-p$ $Prob.\ 1-p$ P

Matrix 12.13c

- GOALIE (ROW PLAYER) (CONT.).
 - HER EXPECTED UTILITY FROM DIVING RIGHT IS

$$EU_{Goalie}(Right) = \underbrace{q(-5)}_{\text{kicker aims left}} + \underbrace{(1-q)0}_{\text{kicker aims right}} = -5q.$$

IF THE GOALIE IS NOT PLAYING A PURE STRATEGY, IT MUST BE

$$EU_{Goalie}(Left) = EU_{Goalie}(Right),$$

 $-5 + 5q = -5q,$
 $10q = 5 \Rightarrow q = \frac{1}{2}.$

The goalie is indifferent between diving left and right when the kicker aims left with 50% probability.

• EXAMPLE 12.9 (CONTINUED):

Kicker

Matrix 12.13c

- KICKER (COLUMN PLAYER).
 - HER EXPECTED UTILITY FROM AIMING LEFT IS

$$EU_{Kicker}(Left) = \underbrace{p0}_{\text{goalie dives left}} + \underbrace{(1-p)8}_{\text{goalie dives right}} = 8 - 8p.$$

HER EXPECTED UTILITY FROM AIMING RIGHT IS

$$EU_{Kicker}(Right) = \underbrace{p8}_{\text{goalie dives left}} + \underbrace{(1-p)0}_{\text{goalie dives right}} = 8p.$$

- EXAMPLE 12.9 (CONTINUED):
 - KICKER (COLUMN PLAYER) (CONT.).
 - IF SHE RANDOMIZES, IT MUST BE THAT SHE IS INDIFFERENT BETWEEN AIMING LEFT AND RIGHT,

$$EU_{Kicker}(Left) = EU_{Kicker}(Right),$$

$$8 - 8p = 8p,$$
 The kicker is indifferent between aiming left and right when the goalie dives left with 50% probability.

- IN SUMMARY, THE ONLY NE OF THIS GAME HAS BOTH PLAYERS RANDOMIZING BETWEEN RIGHT AND LEFT WITH 50% PROBABILITY.
 - THE MIXED-STRATEGY NE (MSNE) IS $p=q=\frac{1}{2}$.
 - PLAYERS RANDOMIZE WITH THE SAME PROBABILITY BECAUSE PAYOFFS ARE SYMMETRIC, BUT MAY NOT BE ALWAYS THE CASE.

- DO ALL GAMES HAVE A MSNE? NOT NECESSARILY.
 - THE PRISONER'S DILEMMA HAS A PSNE IN WHICH ALL PLAYERS CHOOSE TO CONFESS.
 - BECAUSE PLAYERS FIND CONFESSING TO BE A STRICTLY DOMINANT STRATEGY,
 THEY HAVE NO INCENTIVES TO RANDOMIZE THEIR DECISION.
 - IN THE BATTLE OF THE SEXES GAME OR THE COORDINATION

 GAME, PLAYERS DO NOT HAVE A STRICTLY DOMINANT STRATEGY.
 - WE FOUND TWO PSNE. WE CAN CHECK THAT EACH GAME HAS ONE MSNE WHEN WE ALLOW PLAYERS TO RANDOMIZE.
 - THE PENALTY KICKS EXAMPLE ILLUSTRATED THAT ALL GAMS MUST HAVE AT LEAST ONE NE, EITHER A PSNE OR A MSNE.

GRAPHICAL REPRESENTATION OF BEST RESPONSES

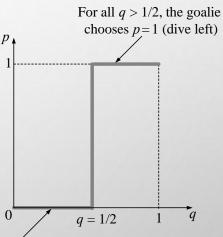
- CONSIDER THE GOALIE AND THE KICKER IN EXAMPLE 12.9.
 - GOALIE. SHE CHOOSES TO DIVE LEFT IF

$$EU_{Goalie}(Left) > EU_{Goalie}(Right),$$

-5 + 5q > -5q,

$$q > \frac{1}{2}$$
.

- When, $q > \frac{1}{2}$, the goalie responds by diving left (p = 1), increasing her chances of blocking the ball.
- For all $q < \frac{1}{2}$, she responds by diving right (p = 0).



For all q < 1/2, the goalie chooses p = 0 (dive right)

GRAPHICAL REPRESENTATION OF BEST RESPONSES

• KICKER. SHE AIMS LEFT IF

$$EU_{Kicker}(Left) > EU_{Kicker}(Right),$$
 $8 - 8p > 8p,$ $p < \frac{1}{2}.$

- When, $p < \frac{1}{2}$, the kicker aims left (q = 1), increasing her chances of scoring
- For all $p > \frac{1}{2}$, she aims right (q = 0).

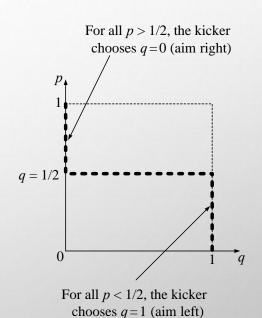


Figure 12.2b

GRAPHICAL REPRESENTATION OF BEST RESPONSES

• PUTTING TOGETHER GOALIE'S AND KICKER'S RESPONSES.

- The goalie's and kicker's best responses crosses at $p=q=\frac{1}{2}$.
- This fact means that both are using her best responses. That is, the strategy profile is a mutual best response.
- The crossing point is the only NE of the game, a msNE.
- If the game would have more than one NE, the best responses should cross at more than one point in the (p,q)-quadrant.

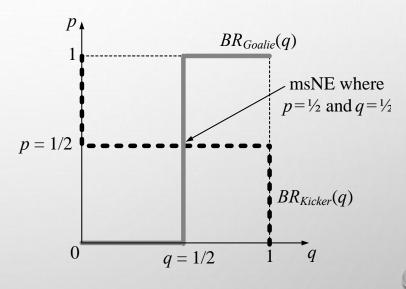


Figure 12.3